
AMT1706 0 - 20GHz SPDT Switch Chip

Key Features:

• Frequency range: 0 – 20GHz

Insertion loss: 1.6dBIsolation: 50dB

• Input standing wave: 1.2

Switch ON output standing wave : 1.3Switch OFF output standing wave : 1.2

Switching time : 28nsControl method : 0/-5V

• Chip dimensions: 1.5mm x 1.5mm x 0.1mm

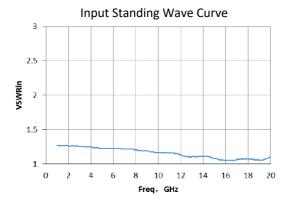
• Applications: wireless communication, transceiver module, radio telecommunication etc.

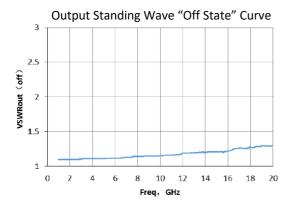
Description:

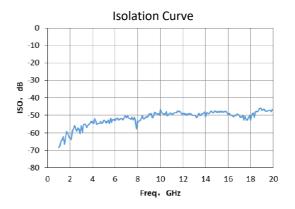
This is an absorptive type of SPDT switch MMIC, it is designed by Gallium Arsenide (GaAs) pHEMT process. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested. The chip uses 0V, -5V level control, typical insertion loss is 1.6dB, isolation is 50dB, input/output standing wave is 1.3.

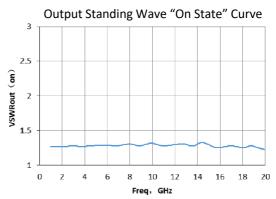
Absolute Maximum Ratings (Ta = 25°C)

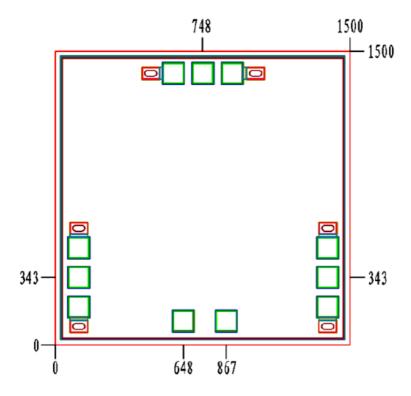
Symbo ₂	Parameter	Value	Remark
V1, 2	Control voltage	0.6V/-8V	
Pin	Input Power	30dBm	
Tm	Sintering Temperature	310°C	30s, N₂ protection
Tstg	Storage Temperature	-65 ~ +150°C	

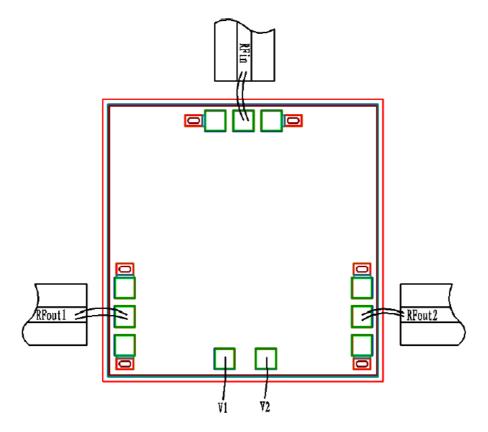

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Value		Unit	
		Min	Typical	Max	
VSWRin	Input standing wave	-	1.2	1.3	-
VSWRout(On)	ON state output standing wave	-	1.3	1.4	-
VSWRout(Off)	OFF state output standing wave	-	1.2	1.3	-
IL	Insertion Loss	-	1.6	2	dB
ISO	Isolation	44	50	-	dB


Typical Performance





Chip Dimensions (Unit: μ m)

Chip Layout Diagram

Pad Definition

No.	Symbol	Function Description	Dimension
1	RFin	RF signal input port, external connect to 50Ω system, no need DC blocking capacitor	100μm*100μm
2	RFout1	RF signal output port 1, external connect to 50Ω system, no need DC blocking capacitor	100μm*100μm
3	RFout2	RF signal output port 2, external connect to 50Ω system, no need DC blocking capacitor	100μm*100μm
4	V1	Supply voltage control port, see Truth Table for control logic	100μm*100μm
5	V2	Supply voltage control port, see Truth Table for control logic	100μm*100μm

Truth Table

Function	V1	V2
RFin – RFout1	0V	-5V
RFin – RFout2	-5V	0V
OFF	-5V	-5V

Please see Appendix A for details.