AMT1112 8 – 12GHz Power Amplifier Chip

Key Features :

- Frequency range : 8 12GHz
- Typical small signal gain : 28dB
- Typical output power : 35.5dBm
- Typical power added efficiency (PAE) : 40%
- Voltage Bias : 8V, -0.7V
- Chip dimensions : 2.8mm x 1.5mm x 0.1mm
- Applications : wireless communication, transceiver module, radio telecommunication etc.

Description :

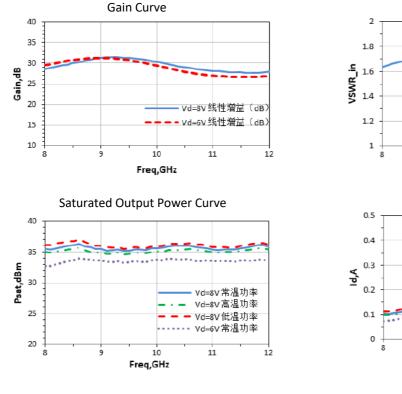
AMT1112 chip is designed by Gallium Arsenide (GaAs) pHEMT process, a high performance 8 - 12GHz power amplifier, it uses dual voltage operation, with drain voltage Vds at 8.0V, it offers 35dBm power output in the frequency range of 8 – 12GHz. This chip is designed with ground through metal vias on the back technology. All chip products are 100% RF tested.

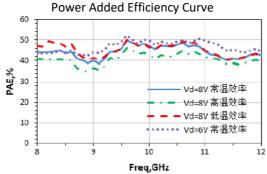
Symbol	Parameter	Value	Remark
Vd	Drain Voltage	9V	
Id	Drain Current	2A	
Vg	Gate Voltage	-0.5V	
lg	Gate Current	50mA	
Pd	Power Dissipation	16W	
Pin	Input Signal Power	25dBm	
Tch	Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N ₂ protection
Tstg	Storage Temperature	-65 ~ +150°C	

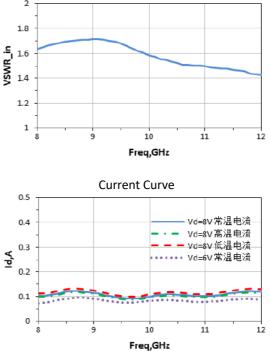
Absolute Maximum Ratings (Ta = 25°C)

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

Electrical Characteristics (Ta = 25°C)

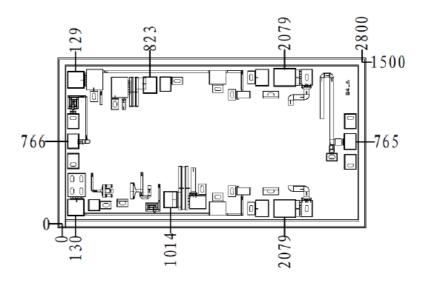

Symbol	Parameter	Test Condition	Value			Unit
			Min	Typical	Max	
G	Small Signal Gain		25	28	-	dB
VSWRi	Input Standing Wave	Vd = 8V	-	1.8	2	
Pout	Saturated Power Output	Vg = -0.7V	34.5	35.5	36.5	dBm
PAE	Power Added Efficiency	F : 8 ~ 12GHz	38	40	-	%
Ι _D	Dynamic Current		-	1.2	1.3	А
l _J	Static Current		-	1	1.1	A

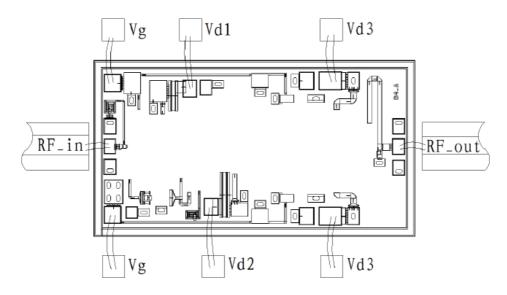

Note, no CW operation.


1

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Typical Performance




Input Standing Wave Curve

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Chip Dimensions (Unit : µm)

Chip Layout Diagram

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Pad Definition						
Symbol	Function	Dimension	Equivalent Circuit			
RF_in	RF signal input port, connecting to external 50 Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	100*128μm²	RF_in ⊖⊣⊣⊢↓↓			
RF_out	RF signal output port, connecting to external 50 Ω system, no need to add DC blocking capacitor.	110*138µm²	-↓-↓ RF_out			
Vg	Amplifier gate bias, need external 100pF, 1000pF capacitor.	150*150μm²	Vg #HHLJ L			
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	120*150μm²				
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	120*150μm²				
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	200*160μm²				

Please see Appendix A for details.