
AMT2112 9 – <u>14GHz Power Amplifier Chip</u>

Key Features :

- Frequency : 9 14GHz
- Typical small signal gain : 30dB
- Typical output power : 43.5dBm
- Typical power added efficiency : 33%
- Supply voltage : 28V, -2V
- Chip dimensions : 4.05mm x 2.35mm x 0.1mm
- Applications : wireless communication, transceiver module, radio telecommunication etc.

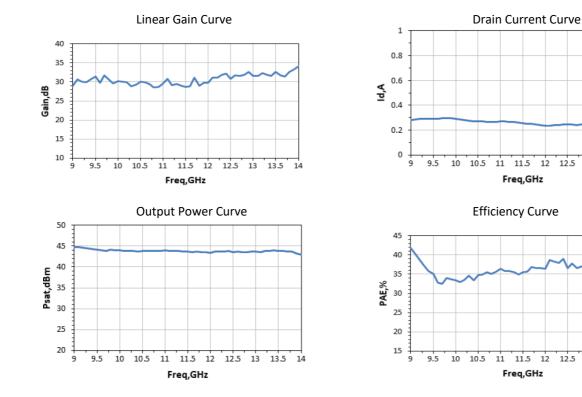
Description:

AMT2112 chip is a high performance high efficiency 9 – 14GHz power amplifier, it is designed based on Gallium Nitrate (GaN) HEMT process, with ground through metal via on the back technology. All chip products are 100% RF tested. AMT2112 is with dual voltage supply, drain voltage Vds at 28V, it provides 43.5dBm output power in 9 – 14GHz frequency range.

Symbol	Parameter	Value	Remark					
Vd	Drain Voltage	35V						
Id	Drain Current	4A						
Vg	Gate Voltage	-1.6V						
lg	Gate Current	150mA						
Pd	DC Power Consumption	100W						
Pin	Input Signal Power	30dBm						
Tch	Operating Temperature	150°C						
Tm	Sintering Temperature	310°C	30s, N ₂ protection					

Absolute Maximum Ratings (Ta = 25°C)

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)

Symbol	Parameter	Test Condition	Value		Unit	
			Min	Typical	Max	
Gain	Small Signal Gain		-	30	-	dB
VSWRin	Input SW	Vd = 28V	-	1.8	2	dB
Pout	Saturated Output Power	Vg = -2V	-	43.5	-	dBm
PAE	Power Added Efficiency	F : 9~14GHz	-	33	-	%
Id	Operating Current	Duty Cycle : 10%	-	2.4	3	A

Note, under non-CW operation.

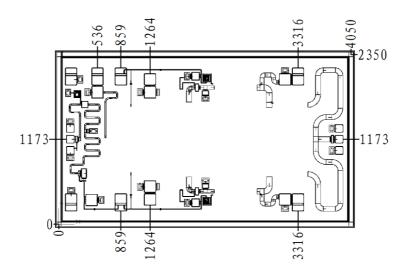
Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Typical Performance

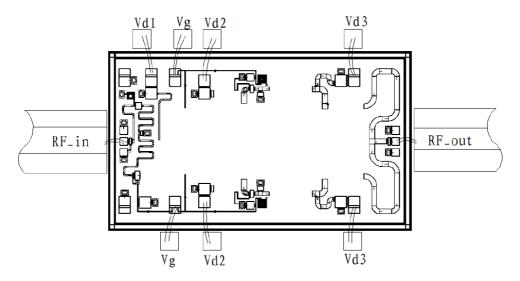
12 12.5

12.5

12


13 13.5 14

13 13.5


14

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to https://www.advancedmicrosystemstech.com for update information.

Chip Dimension (Unit : µm)

Chip Layout Diagram

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Pad Delinition							
Symbol	Function	Dimension	Equivalent Circuit				
RF_in	RF signal input port, connecting to external 50 Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	100*100µm²	RF₋in ↔				
RF_out	RF signal output port, connecting to external 50 Ω system, no need to add DC blocking capacitor.	100*100µm²	- ↓ RF_out				
Vg	Amplifier gate bias, need external 100pF, 1000pF capacitor.	150*230μm²	Vg HHLJ				
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*230μm²					
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*150μm²					
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*230μm²					

Pad Definition

Refer to Appendix A for details.