
AMT2107 7 – 13GHz Power Amplifier Chip

Key Features:

Frequency: 7 – 13GHz

Typical small signal gain: 34dBTypical output power: 45dBm

• Typical power added efficiency: 35%

Supply voltage: 28V, -2.2V

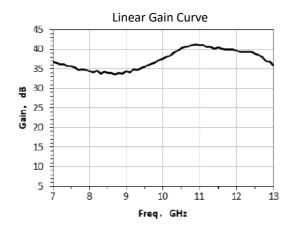
• Chip dimensions: 3.3mm x 3.5mm x 0.1mm

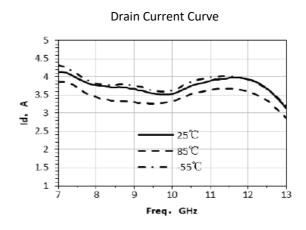
• Applications: wireless communication, transceiver module, radio telecommunication etc.

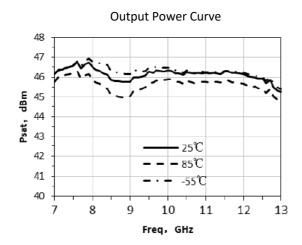
Description:

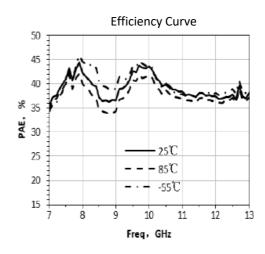
AMT2107 chip is a high performance high efficiency $7-13 \, \text{GHz}$ power amplifier, it is designed based on Gallium Nitrate (GaN) HEMT process, with ground through metal via on the back technology. All chip products are 100% RF tested. AMT2107 is with dual voltage supply, drain voltage Vds at 28V, gate voltage at -2.2V, it provides 45dBm output power in $7-13 \, \text{GHz}$ frequency range.

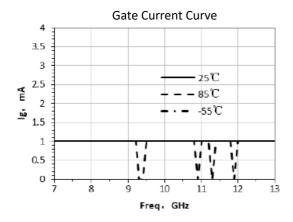
Absolute Maximum Ratings (Ta = 25°C)

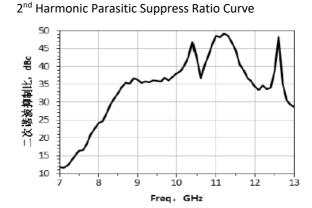

Symbol	Parameter	Value	Remark	
Vd	Drain Voltage	35V		
Id	Drain Current	4A		
Vg	Gate Voltage	-1.6V		
lg	Gate Current	150mA		
Pd	DC Power Consumption	100W		
Pin	Input Signal Power	30dBm		
Tch	Operating Temperature	150°C		
Tm	Sintering Temperature	310°C	30s, N₂ protection	

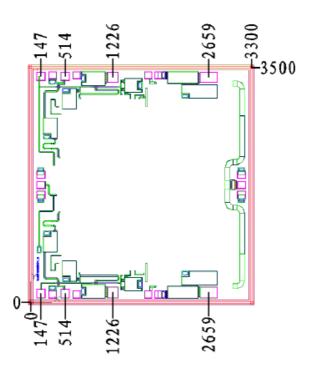

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

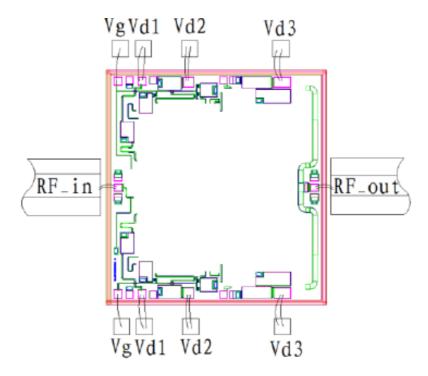

Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Condition	Value			Unit
			Min	Typical	Max	
Gain	Small Signal Gain		-	34	-	dB
VSWRin	Input SW	Vd = 28V	-	1.8	2.5	dB
Pout	Saturated Output Power	Vg = -2.2V	-	45	-	dBm
PAE	Power Added Efficiency		-	35	-	%
Id	Operating Current	Duty Cycle: 10%	-	3.5	4	A


Typical Performance







Chip Dimension (Unit: µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad	120*100μm²	RF-in
RF_out	this pad. RF signal output port, connecting to external 50Ω system, no need to add DC blocking capacitor.	120*100μm²	RF_out
Vg	Amplifier gate bias, need external 100pF, 1000pF capacitor.	120*120μm²	Vg O
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	120*120μm²	J-H-P
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*150μm²	- Vd2
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	250*150μm²	Vd3

Please see Appendix A for details.