
AMT1327 6 - 18GHz Transceiver Integrated Multi-Function Chip

Key Features :

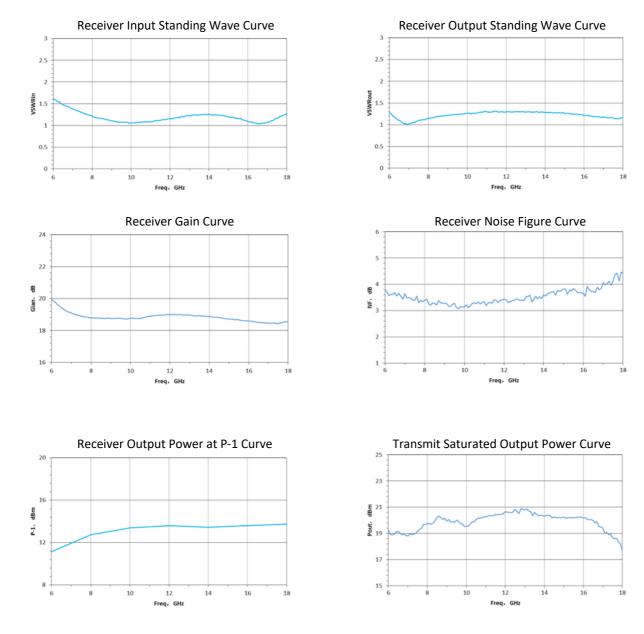
- Frequency range : 6 18GHz
- Receiver gain : 19dB
- Transmitter gain : 19.5dB
- Receiver noise : 4dB
- Receive input/output standing wave : 1.3/1.3
- Transmit input/output standing wave : 1.5/1.5
- Receiver output power at P-1 : 13dBm
- Transceiver output power at P-1 : 18dBm
- Transmit saturated output power : 20dBm
- Receiver power dissipation : 5V/30mA
- Transmitter power dissipation : 5V/120mA
- Switch control method : 0/-5V
- Chip dimensions : 2.0mm x 2.0mm x 0.1mm
- Applications : wireless communication, transceiver module, radio telecommunication etc.

Description:

AMT1327 is a high performance transceiver multi-function chip, frequency range is 6 – 18GHz, it integrates switch and bi-directional power amplifier, receiver gain is 19dB, noise figure is 4dB, transmitter gain is 19.5dB, and transmitter output power at P-1 is 18dBm. It is designed by Gallium Arsenide (GaAs) process. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

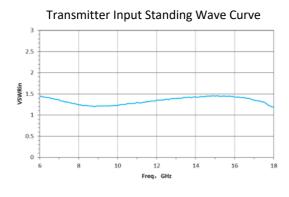
Symbol	Parameter	Value	Remark		
VD	Drain voltage	+7V			
VEE	Driver supply voltage	-6V			
Pin	Max. Input Signal Power	25dBm			
Tch	Operation Temperature	150°C			
Tm	Sintering Temperature	310°C	30s, N ₂ protection		
Tstg	Storage Temperature	-65 ~ +150°C			

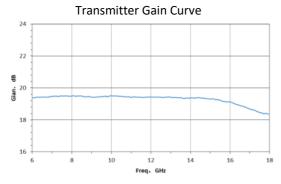
Absolute Maximum Ratings (Ta = 25°C)

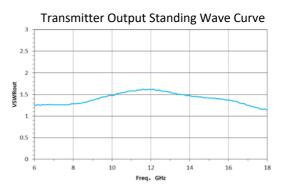

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

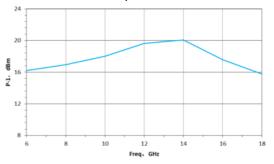
Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

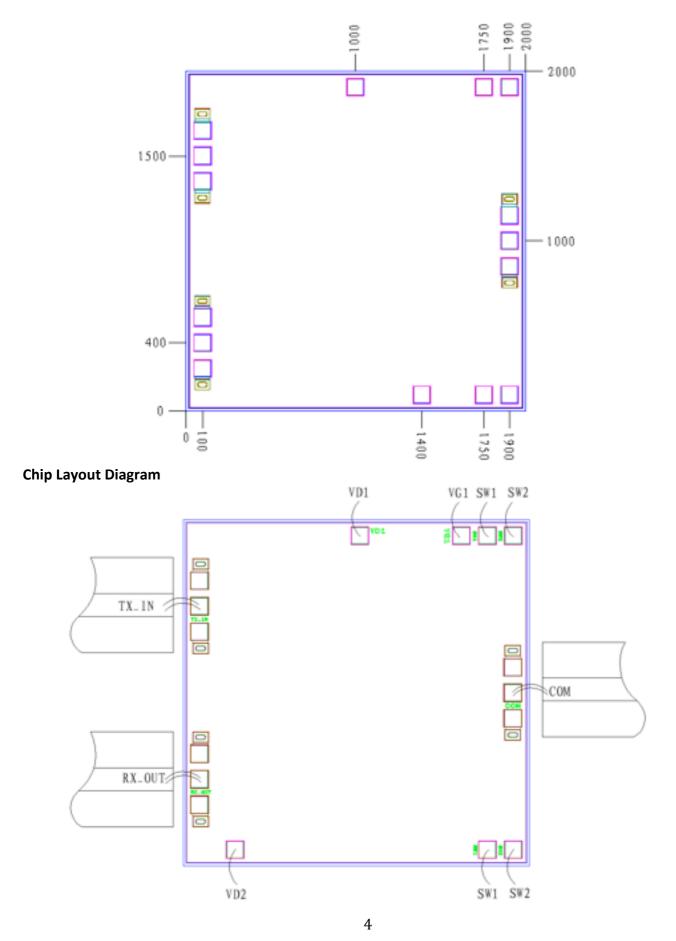
Symbol Parameter		Test Conditions	Value			Unit
			Min	Typical	Max	
G _R	Receiver gain	F : 6 ~ 18GHz	-	19	-	dB
NF	Receiver noise figure	VD1 = 0V, VD2 = +5V,	-	4	-	dB
VSWR _{RX}	Receiver input standing wave	VG1 = 0V, SW1 = 0V,	-	1.3	-	-
VSWR _{RX}	Receiver output standing wave	SW2 = -5V	-	1.3	-	-
P _{R-1dB}	Receiver output power at P-1 point		-	13	-	dBm
GT	Transmitter gain	F : 6 ~ 18GHz	-	19.5	-	dB
VSWR _{TX}	Transmitter input standing wave	VD1 = +5V, VD2 = 0V,	-	1.5	-	-
VSWR _{TX}	Transmitter output standing wave	VG1 = -5V, SW1= -5V,	-	1.5	-	-
P _{T-1dB}	Transmitter output power at P-1 point	SW2 = 0V	-	18	-	dBm
Pout	Transmit saturated output power		-	20	-	dBm


Electrical Characteristics (Ta = 25°C)


Typical Performance




Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to https://www.advancedmicrosystemstech.com for update information.



Transmitter Output Power at P-1 Curve

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Chip Dimensions (Unit : µm)

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Pad Definition				
Symbol	Symbol Function Description			
TX_IN	RF signal transmit input port, external connecting to 50 Ω system, internal built-in DC blocking capacitor.	100µm * 100µm		
RX_OUT	RF signal receive output port, external connecting to 50 Ω system, internal built-in DC blocking capacitor.	100µm * 100µm		
COM	RF signal transmit output/receive input port, external connecting to 50 Ω system, internal built-in DC blocking capacitor.	100µm * 100µm		
VD1	Amplifier voltage bias at transmit state, refer to usage explanation for control logic	100μm * 100μm		
VD2	Amplifier voltage bias at receive state, refer to usage explanation for control logic	100µm * 100µm		
VG	Amplifier voltage bias at transmit state, refer to usage explanation for control logic	100µm * 100µm		
SW1	Supply control port, refer to usage explanation for control logic	100µm * 100µm		
SW2	Supply control port, refer to usage explanation for control logic	100μm * 100μm		

Usage Explanation

Operation State	Receive State (COM-RX_OUT)	Transmit State (TX_IN-COM)
Voltage bias	VD1 = 0V, VD2 = +5V, VG = 0V, SW1 = -5V,	VD1 = +5V, VD2 = 0V, VG = -5V, SW1 = 0V,
	SW2 = 0V	SW2 = -5V

Note, use either one of SW1 / SW2.

Please see appendix A for details.