AMT1102 6 – 16GHz Power Amplifier Chip

Key Features:

Frequency range: 6 – 16GHz
Typical small signal Gain: 24dB
Typical output power: 22.5dBm

Voltage bias: +5V, 0.13A

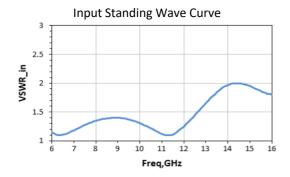
• Chip dimensions: 1.47mm x 1.35mm x 0.1mm

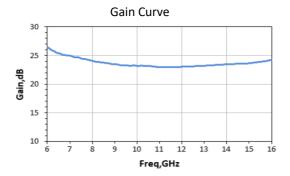
• Applications: wireless communication, transceiver module, radio telecommunication etc.

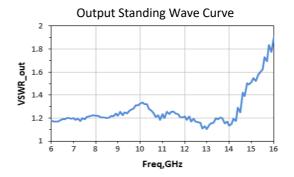
Description:

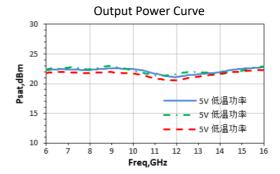
AMT1102 chip is a Gallium Arsenide (GaAs) pHEMT process designed power amplifier chip, with a wide frequency range of 6 – 16GHz, single voltage operation, drain voltage Vds at 5V, linear gain of 24dB, saturated output power at 22.5dBm. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

Absolute Maximum Ratings (Ta = 25°C)

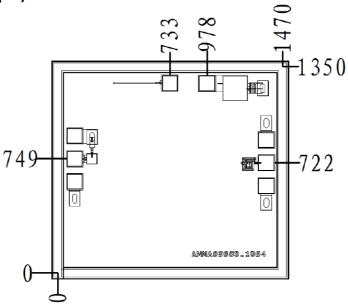

7.555 at C 17.67.11.11.11.155 (1.4 25 6)							
Symbol	Parameter	Value	Remark				
Vd	Drain voltage	+11V					
Pin	Input Signal Power	15dBm					
Tch	Operating Temperature	-55 ~ +125°C					
Tm	Sintering Temperature	310°C	30s, N₂ protection				
Tstg	Storage Temperature	-65 ~ +150°C					

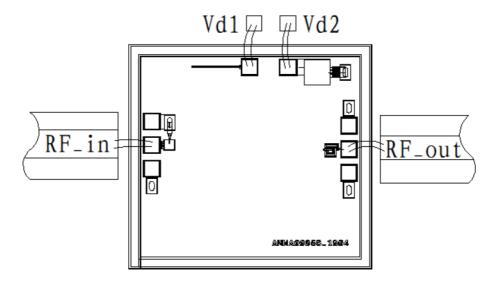

^[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Condition	Value			Unit
			Min	Typical	Max	
G	Small Signal Gain		22	24	ı	dB
Id	Drain Current	Vd = 5V	-	130	ı	mA
VSWR_in	Input SW	F : 6-16GHz	-	1.8	ı	
VSWR_out	Output SW		-	1.8	ı	
Gp	Power Gain	Vd = 5V	-	17.5	-	dB
Po(sat)	Saturated Output Power	F: 6-16GHz	22	22.5	-	dBm
		Duty Cycle : 20%				

Typical Performance





Chip Dimensions (Unit: μ m)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	100*100μm²	RF-in
RF_out	RF signal output port, connecting to external 50 $\!\Omega$ system, no need to add DC blocking capacitor.	100*100μm²	RF_out
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	100*100μm²	-PH-P
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	106*100μm²	Vd2

Refer to Appendix A for details