AMT1713 6 - 18GHz SPDT Switch Chip

Key Features:

• Frequency range: 6 – 18GHz

Insertion loss: 0.6dBIsolation: 40dB

Input/output standing wave : 1.3Static operation current : 30mA

Input power P-1 : 24dBmControl method : +5V/-5V

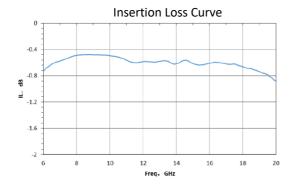
• Chip Dimensions: 1.8mm x 0.97mm x 0.1mm

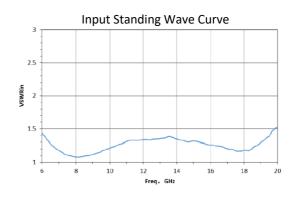
• Applications: wireless communication, transceiver module, radio telecommunication etc.

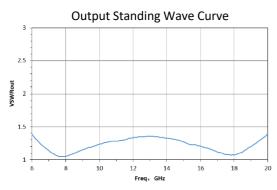
Description:

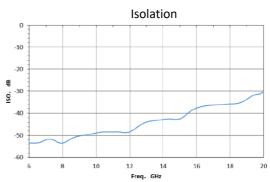
AMT1713 is a high performance GaAs PIN switch chip, it is designed by PIN process. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested. It uses +5V, -5V level control, typical insertion loss is 0.6dB, isolation is 40dB, input/output standing wave 1.3.

Absolute Maximum Ratings (Ta = 25°C)

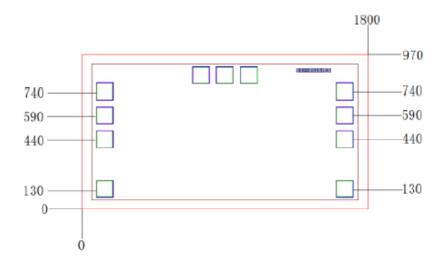

Symbol	Parameter	Value	Remark
V1, V2	Control voltage	6V/-6V	
Pin	Input Power	30dBm	
Tm	Sintering Temperature	310°C	30s, N ₂ protection
Tstg	Storage Temperature	-65 ~ +150°C	

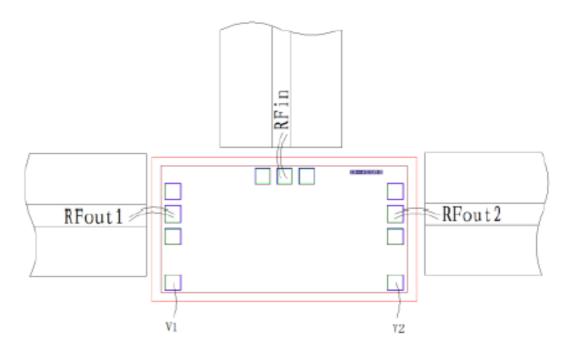

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)


Symbol Parameter		Test Conditions	Value			Unit
			Min	Typical	Max	
VSWRin	Input standing wave	F:6~18GHz Refer to Truth Table for	-	1.3	1.4	-
VSWRout	Output standing wave		-	1.3	1.4	-
IL	Insertion Loss		-	0.6	0.8	dB
ISO	Isolation		30	40	-	dB
I	Static operating current	V1/V2 control logic	-	30	-	mA
P-1	Input power at P-1		-	24	-	dBm

Typical Performance





Chip Dimensions (Unit: µm)

Chip Layout Diagram

Pad Definition

No.	Symbol	Function Description	Dimension
1	RFin	RF signal input port, external connect to 50Ω system, internal built in DC blocking capacitor	100μm*100μm
2	RFout1	RF signal output port 1, external connect to 50Ω system, internal built in DC blocking capacitor	100μm*100μm
3	RFout2	RF signal output port 2, external connect to 50Ω system, internal built in DC blocking capacitor	100μm*100μm
4	V1	Supply voltage control port, see Truth Table for control logic	100μm*100μm
5	V2	Supply voltage control port, see Truth Table for control logic	100μm*100μm

Truth Table

	V1	V2
RFin – RFout1	-5V	+5V
RFin – RFout2	+5V	-5V
Off	+5V	+5V

Please see Appendix A for details.