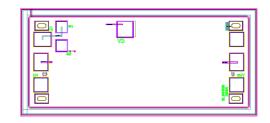
# AMT1223 0.1 – 20GHz Low Noise Amplifier Chip

#### **Key Features:**

Frequency range: 0.1 – 20GHz

Typical gain: 22dB

Input standing wave : 1.3Output standing wave : 1.3


Noise figure: 2.2dB

P-1 : 11dBm @ +5V/52mA

6dBm @ +5V/26mA (Low power mode)

Chip dimensions: 1.5mm x 0.65mm x 0.1mm

• Applications: wireless communication, transceiver module, radio telecommunication etc.

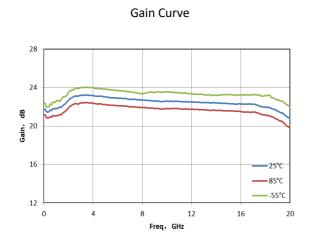


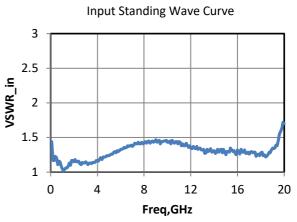
### **Description:**

AMT1223 chip is a Gallium Arsenide (GaAs) high performance Low Noise Amplifier, it covers 0.1 – 20GHz frequency range. It uses +5V single voltage operation, noise figure is 2.2dB, and 22dB typical gain. This chip is designed with ground through metal vias on the back technology.

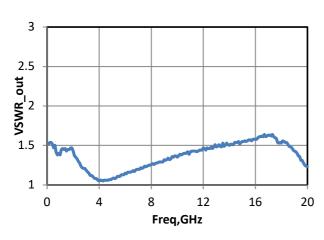
**Absolute Maximum Ratings (Ta = 25°C)** 

| Symbol | Parameter             | Value        | Remark                         |
|--------|-----------------------|--------------|--------------------------------|
| Vd     | Drain Voltage         | +7V          |                                |
| Pin    | Input Signal Power    | 17dBm        |                                |
| Tch    | Operating Temperature | 150°C        |                                |
| Tm     | Sintering Temperature | 310°C        | 30s, N <sub>2</sub> protection |
| Tstg   | Storage Temperature   | -65 ~ +150°C |                                |


<sup>[1]</sup> Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

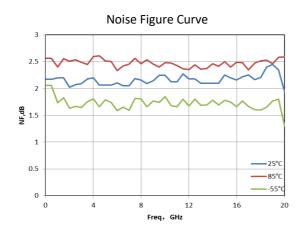

**Electrical Characteristics (Ta = 25°C)** 

| Symbol   | Parameter                   | <b>Test Conditions</b> | Value |         | Unit |     |
|----------|-----------------------------|------------------------|-------|---------|------|-----|
|          |                             |                        | Min   | Typical | Max  |     |
| G        | Gain                        |                        | -     | 22      | •    | dB  |
| NF       | Noise Figure                |                        | -     | 2.2     | •    | dB  |
| Id       | Static Current              | +5V/52mA               | =     | 52      | -    | mA  |
| VSWR_in  | Input Standing Wave         | F: 0.1 ~ 20GHz         | -     | 1.3     | 1.8  | -   |
| VSWR_out | <b>Output Standing Wave</b> |                        | -     | 1.3     | 1.6  | -   |
| P-1      | Output Power at 1dB point   |                        | -     | 11      | -    | dBm |


AMT1223 0.1 – 20GHz Low Noise Amplifier Chip

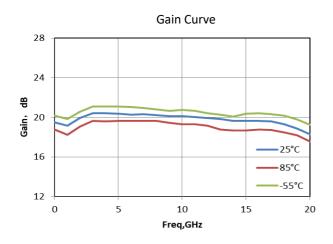
# **Typical Performance**

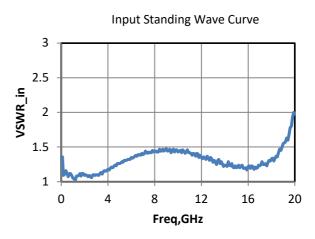


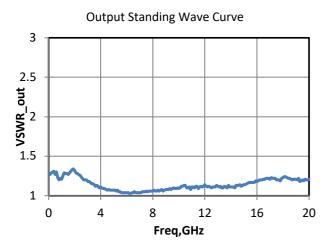



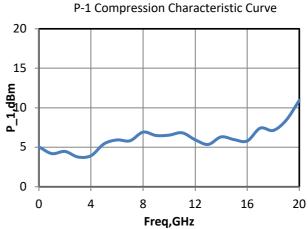

#### **Output Standing Wave Curve**

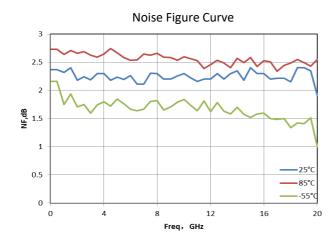



#### P-1 Compression Characteristic Curve



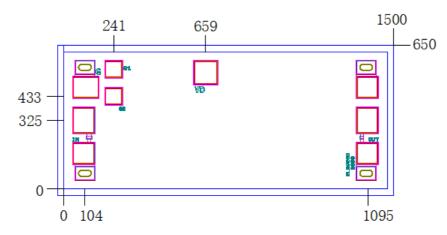





AMT1223 0.1 – 20GHz Low Noise Amplifier Chip


# **Typical Performance (Low power mode)**

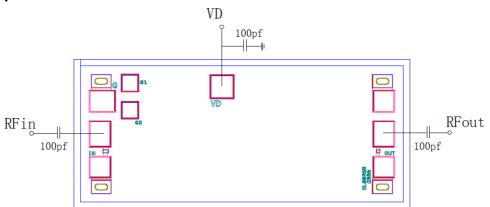




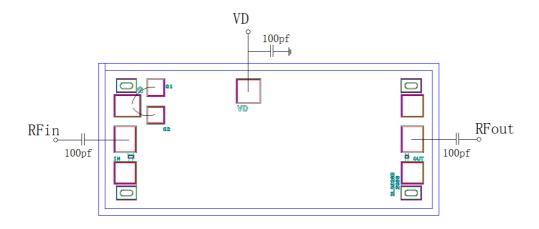








AMT1223 0.1 – 20GHz Low Noise Amplifier Chip

# Chip Dimensions (Unit: µm)




# **Chip Layout Diagram**

#### **Normal Mode:**



# Low Power Mode (G1, G2 connected to G pad):



# AMT1223 0.1 – 20GHz Low Noise Amplifier Chip

#### **Pad Definition**

| Symbol | Function Description                                                                                | Demensions  | <b>Equivalent Circuit</b> |
|--------|-----------------------------------------------------------------------------------------------------|-------------|---------------------------|
| RFin   | RF signal input port, connecting to external 50 $\Omega$ system, need to add DC blocking capacitor. | 100μm*100μm | RF-in                     |
| RFout  | RF signal output port, connecting to external $50\Omega$ system, need to add DC blocking capacitor. | 100μm*100μm | RF_out                    |
| Vd     | Amplifier bias, need to connect 100pF external capacitor                                            | 100μm*100μm | AD ST.                    |
| G      | Ground                                                                                              | 100μm*100μm |                           |
| G1, G2 | Connected to G pad at Low Power Mode                                                                | 80μm*80μm   |                           |

Please see Appendix A for details.