AMT1109 2 – 20GHz Power Amplifier Chip

Key Features:

Frequency range: 2 – 20GHz
Typical small signal Gain: 13.5dB
Typical output power: 30dBm

• Typical power added efficiency (PAE): 20%

Supply voltage: 12V

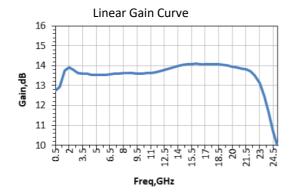
• Chip dimensions: 2.3mm x 1.4mm x 0.1mm

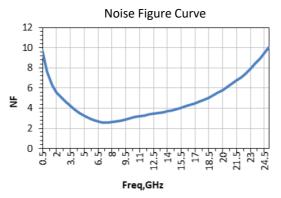
• Applications: wireless communication, transceiver module, radio telecommunication etc.

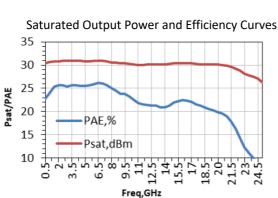
Description:

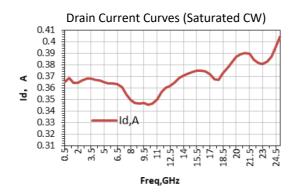
AMT1109 chip is a Gallium Arsenide (GaAs) designed power amplifier chip, it uses dual voltage operation, with drain voltage Vds at 12V, it offers 30dBm power output in a frequency range of 2 – 20GHz. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

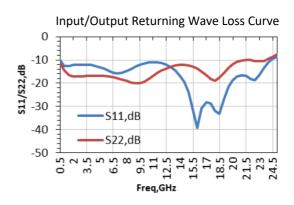
Absolute Maximum Ratings (Ta = 25°C)

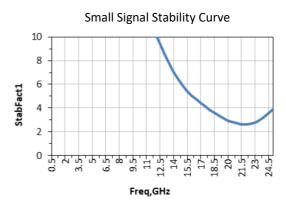

Symbol	Parameter	Value	Remark
Vd	Drain Voltage	16V	
Id	Drain Current	1A	
lg	Gate Current	150mA	
Pd	Power Dissipation	10W	
Pin	Input Signal Power	25dBm	
Tch	Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N₂ protection
Tstg	Storage Temperature	-65 ~ +150°C	

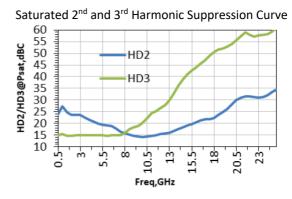

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

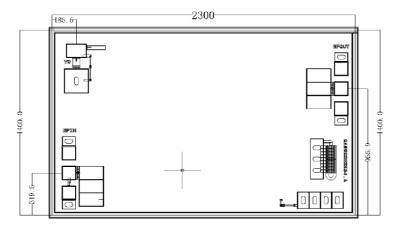

Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Condition	Value		Unit			
			Min	Typical	Max			
G	Small Signal Gain	Vd = 12V	•	13.5	-	dB		
VSWR_in	Input Standing Wave		•	1.5	1.8	dB		
Pout	Saturated Power Output		30	ı	31	dBm		
PAE	Power Added Efficiency	F : 2 ~ 20GHz	•	20	-	%		
Id	Operation Current		-	0.35	0.4	Α		


Typical Performance









Chip Dimensions (Unit : μm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 $\!\Omega$ system. DC blocking capacitor is not needed, if external DC current is applied to this pad.	100*100μm²	RF₋in ○
RF_out	RF signal output port, connecting to external 50Ω system, no need to add DC blocking capacitor.	100*100μm²	RF_out
Vd	Amplifier drain bias, need external 100pF, 1000pF capacitor.	100*100μm²	Vd

Please see Appendix A for details.