
### AMT1708 0 - 40GHz Switch Chip



#### **Key Features:**

Frequency range: 0 – 40GHz
Insertion loss: 1dB@20GHz
Isolation: 35dB@20GHz

• Input/output standing wave: 1.3

Switching time : 30nsControl method : 0/-5V

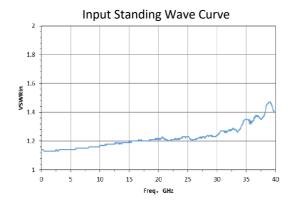
• Chip dimensions: 0.875mm x 0.9mm x 0.1mm

Applications: wireless communication, transceiver module, radio telecommunication etc.

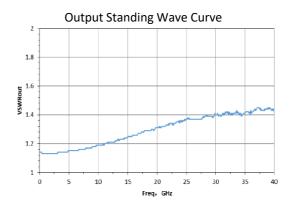
#### **Description:**

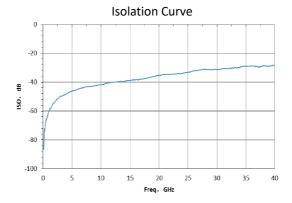
This is an absorptive type of SPDT switch MMIC, it is designed by Gallium Arsenide (GaAs) pHEMT process. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested. It uses 0V, -5V level control, typical insertion loss is 1dB@20GHz, isolation is 35dB@20GHz, input/output standing wave is 1.3.

### **Absolute Maximum Ratings (Ta = 25°C)**

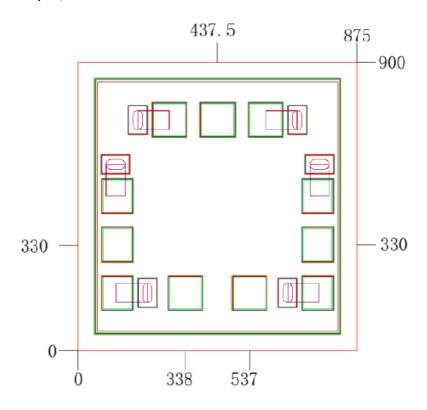

| Symbol | Parameter             | Value        | Remark                         |
|--------|-----------------------|--------------|--------------------------------|
| V1, 2  | Control voltage       | 0.6V/-6V     |                                |
| Pin    | Input Power           | 30dBm        |                                |
| Tm     | Sintering Temperature | 310°C        | 30s, N <sub>2</sub> protection |
| Tstg   | Storage Temperature   | -65 ~ +150°C |                                |


[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

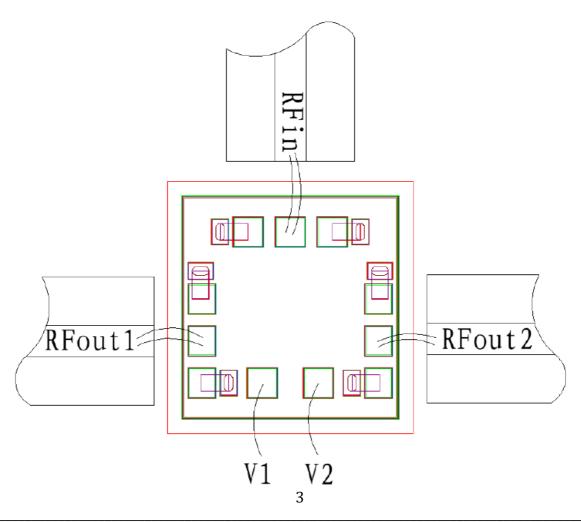

### Electrical Characteristics (Ta = 25°C)


| Symbol  | Parameter            | <b>Test Conditions</b> | value Value |         |     | Unit |
|---------|----------------------|------------------------|-------------|---------|-----|------|
|         |                      |                        | Min         | Typical | Max |      |
| VSWRin  | Input standing wave  |                        | -           | 1.3     | 1.6 | -    |
| VSWRout | Output standing wave |                        | -           | 1.3     | 1.5 | -    |
| IL      | Insertion Loss       | F:0~40GHz              | -           | 1       | 1.6 | dB   |
| ISO     | Isolation            |                        | 28          | 35      | -   | dB   |

# **Typical Performance**








# Chip Dimensions (Unit: $\mu$ m)



# **Chip Layout Diagram**



### **Pad Definition**

| No. | Symbol | Function Description                                                                          | Dimension   |
|-----|--------|-----------------------------------------------------------------------------------------------|-------------|
| 1   | RFin   | RF signal input port, external connect to $50\Omega$ system, no need DC blocking capacitor    | 100μm*100μm |
| 2   | RFout1 | RF signal output port 1, external connect to $50\Omega$ system, no need DC blocking capacitor | 100μm*100μm |
| 3   | RFout2 | RF signal output port 2, external connect to $50\Omega$ system, no need DC blocking capacitor | 100μm*100μm |
| 4   | V1     | Supply voltage control port, see Truth Table for control logic                                | 100μm*100μm |
| 5   | V2     | Supply voltage control port, see Truth Table for control logic                                | 100μm*100μm |

### **Truth Table**

|               | V1  | V2  |
|---------------|-----|-----|
| RFin – RFout1 | 0V  | -5V |
| RFin – RFout2 | -5V | 0V  |
| OFF           | -5V | -5V |

Please see Appendix A for details.