
AMT1203 2 – 8GHz Low Noise Amplifier Chip

Key Features :

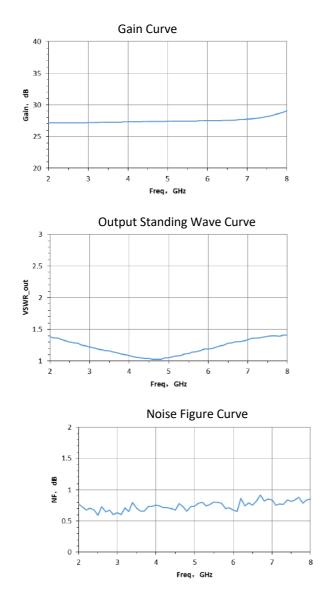
- Frequency range : 2 8GHz
- Typical gain : 27dB
- Input/output standing wave : 1.4/1.3
- Noise figure : 0.7dB
- P-1 : 11dBm @ +5V/30mA
- Chip dimensions : 2.2mm x 1.15mm x 0.1mm
- Applications : wireless communication, transceiver module, radio telecommunication etc.

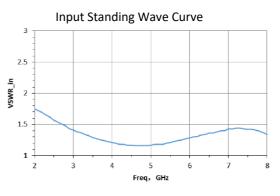
Description:

AMT1203 chip is a Gallium Arsenide (GaAs) high performance Low Noise Amplifier, it covers 2 - 8GHz frequency range. AMLA0009S uses +5V single voltage operation, Noise Figure is 0.7dB, and 27dB typical gain. This chip is designed with ground through metal vias on the back technology. All chip products are 100% RF tested.

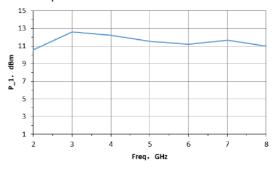
Absolute Maximum Ratings (Ta = 25°C)

Symbol	Parameter	Value	Remark
Vd	Drain Voltage	+7V	
Pin	Input Signal Power	17dBm	
Tch	Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N ₂ protection
Tstg	Storage Temperature	-65 ~ +150°C	

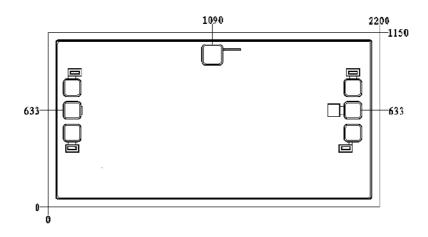

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

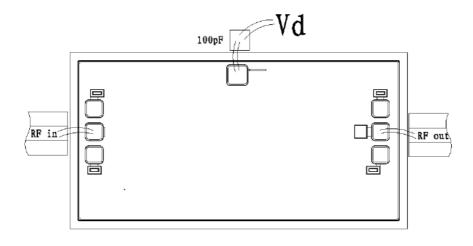

Electrical Characteristics (Ta = 25°C)

Symbol	Parameter	Test Conditions	Value		Unit	
			Min	Typical	Max	
G	Gain		-	27	-	dB
NF	Noise Figure		-	0.7	0.9	dB
Id	Drain Current	Vd = +5V	-	30	-	mA
VSWR_in	Input VSWR	F : 2 ~ 8GHz	-	1.4	1.8	-
VSWR_out	Output VSWR		-	1.3	1.5	-
P-1	Output Compression at 1dB point		10	11	-	dBm


Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Typical Performance





Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Chip Dimensions (Unit : µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit			
RF_in	RF signal input port, connecting to external 50 Ω system. no need to add DC blocking capacitor.	100*100µm²	RF₋in ↔			
RF_out	RF signal output port, connecting to external 50 Ω system, no need to add DC blocking capacitor.	100*100µm²	-			
Vd	Amplifier bias, need to connect external 100pF capacitor.	100*100μm²	VD C			

Please see Appendix A for details.

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.