AMT2110A 8 – 12GHz Power Amplifier Chip

Key Features:

• Frequency: 8 – 12GHz

Typical small signal gain: 38dB

Typical output power : 46dBm@8-11GHz

44dBm@11-12GHz

• Typical power added efficiency: 38%

Supply voltage: 28V, -2.2V

• Chip dimensions: 4.35mm x 3.2mm x 0.1mm

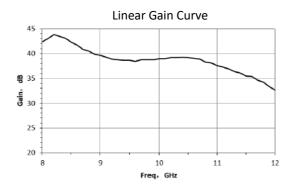
• Applications: wireless communication, transceiver module, radio telecommunication etc.

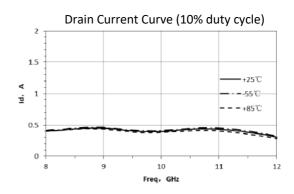
Description:

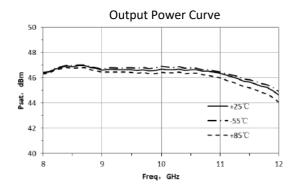
AMT2110A chip is a high performance high efficiency $8-12 \, \text{GHz}$ power amplifier, it is designed based on $0.25 \, \mu \text{m}$ gate length Gallium Nitrate (GaN) HEMT process, with ground through metal via on the back technology. All chip products are 100% RF tested. AMT2110A is with dual voltage supply, drain voltage Vds at 28V, it provides 46dBm output power in $8-12 \, \text{GHz}$ frequency range.

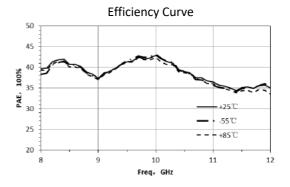
Absolute Maximum Ratings (Ta = 25°C)

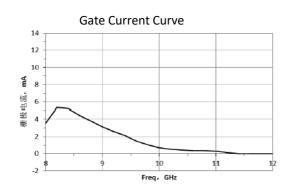
Symbol	Parameter	Value	Remark
Vd	Drain Voltage	35V	
Id	Drain Current	6A	
Vg	Gate Voltage	-1.2V	
lg	Gate Current	150mA	
Pd	DC Power Consumption	168W	
Pin	Input Signal Power	30dBm	
Tch	Operating Temperature	225°C	
Tm	Sintering Temperature	310°C	30s, N₂ protection

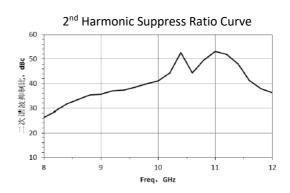

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

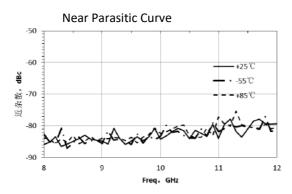

Electrical Characteristics (Ta = 25°C)

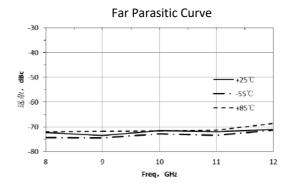

Liectrical Characteristics (1a - 25 C)						
Symbol	Parameter	Test Condition	Value		Unit	
			Min	Typical	Max	
Gain	Small Signal Gain		ı	38	-	dB
VSWRin	Input SW	Vd = 28V	ı	-	2	
Gp	Power Gain	Vg = -2.2V	ı	25		dB
Psat	Saturated Output Power	F:8~12GHz	44	46	-	dBm
PAE	Power Added Efficiency	Duty Cycle : 10%	-	38	-	%
Id	Operating Current		0.3	0.4	0.5	А

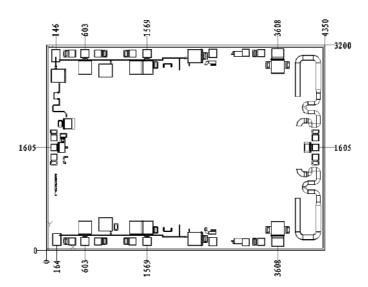

Note, under non-CW operation.

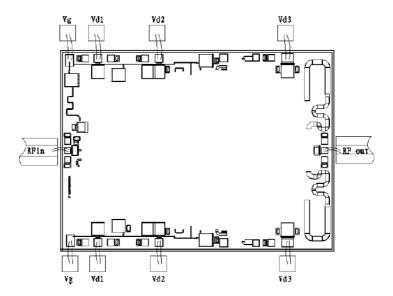

Typical Performance











Chip Dimension (Unit: µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit				
RF_in	RF signal input port, connecting to external 50Ω system. no need to add DC blocking capacitor.	120*100μm²	RF-in O				
RF_out	RF signal output port, connecting to external 50Ω system, no need to add DC blocking capacitor.	120*100μm²	RF_out				
Vg	Amplifier gate bias, need external 100pF, 1000pF capacitor.	150*150μm²	Vg Q				
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*150μm²	Juliu Vd1				
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*150μm²					
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	200*150μm²					

Refer to Appendix A for details.