
AMT1214 12 – 18GHz Low Noise Amplifier Chip

Key Features:

• Frequency range: 12 – 18GHz

• Typical gain: 16dB

Input/output standing wave: 1.4/1.6

• Noise figure: 3dB

• P-1: 16dBm @ +5V/55mA

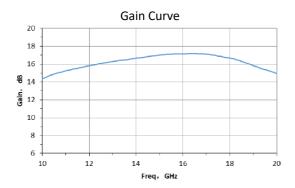
• Chip dimensions: 1.25mm x 0.9mm x 0.1mm

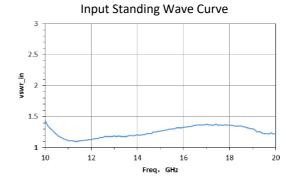
Applications: wireless communication, transceiver module, radio telecommunication etc.

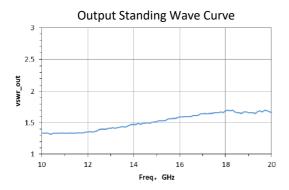
Description:

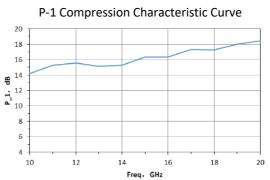
AMT1214 chip is a Gallium Arsenide (GaAs) high performance Low Noise Amplifier, it covers 12 – 18GHz frequency range. It uses +5V single voltage operation, noise figure is 3dB, and 16dB typical gain. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

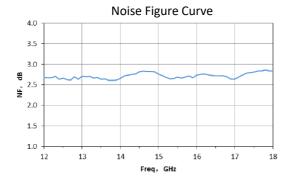
Absolute Maximum Ratings (Ta = 25°C)

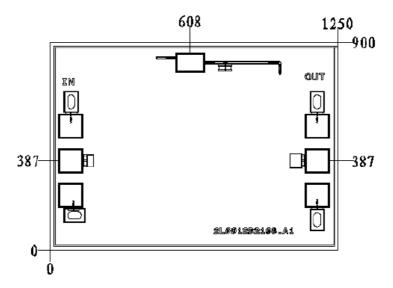

Symbol	Parameter	Value	Remark				
Vd	Drain Voltage	+7V					
Pin	Input Signal Power	17dBm					
Tch	Operating Temperature	150°C					
Tm	Sintering Temperature	310°C	30s, N ₂ protection				
Tstg	Storage Temperature	-65 ~ +150°C					

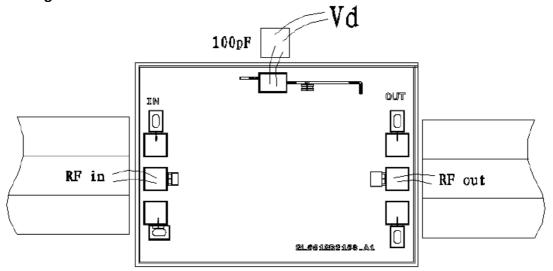

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Conditions	Value		Unit	
			Min	Typical	Max	
G	Gain		-	16	-	dB
NF	Noise Figure		-	2	2.2	dB
Id	Static Current	Vd = +5V	-	55	-	mA
VSWR_in	Input Standing Wave	F : 12 ~ 18GHz	-	1.4	1.5	•
VSWR_out	Output Standing Wave		-	1.6	1.8	1
P-1	Output Power at 1dB point		15	16	-	dBm


Typical Performance





Chip Dimensions (Unit: μ m)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 $\!\Omega$ system. no need to add DC blocking capacitor.	100*100μm²	RF-in
RF_out	RF signal output port, connecting to external 50Ω system, no need to add DC blocking capacitor.	100*100μm²	RF-out
Vd	Amplifier bias, need to connect external 100pF capacitor.	100*100μm²	### = P

Please see Appendix A for details.