AMT1115 13 – 18GHz Power Amplifier Chip

Key Features :

- Frequency range : 13 18GHz
- Typical small signal gain : 22dB
- Typical output power : 33.5dBm
- Voltage bias : Vd = 8V, Vg = -0.6V
- Chip dimensions : 2.5mm x 1.4mm x 0.1mm
- Applications : wireless communication, transceiver module, radio telecommunication etc.

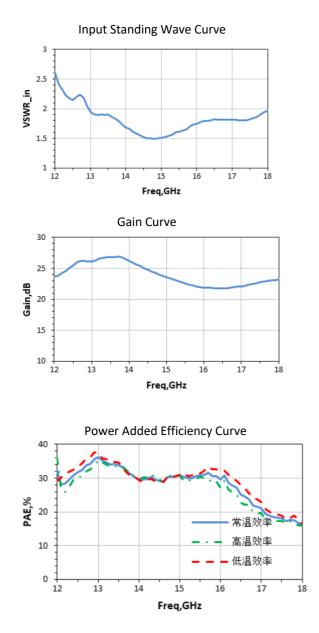
Description:

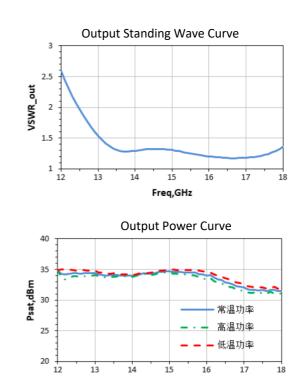
AMT1115 chip is a Gallium Arsenide (GaAs) designed high performance power amplifier for 16 - 28GHz frequency range. It uses dual voltage operation, with drain voltage Vds at 8V, it offers 22dB linear gain, and 33.5dBm saturated output power. This chip is designed with ground through metal vias on the back technology. All chip products are 100% RF tested.

Symbol	Parameter	Value	Remark			
Vd	Drain Voltage	+11V				
Pin	Input Signal Power	15dBm				
Tch	Operating Temperature	175°C				
Tm	Sintering Temperature	310°C	30s, N ₂ protection			
Tstg	Storage Temperature	-65 ~ +150°C				

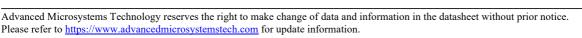
Absolute Maximum Ratings (Ta = 25°C)

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

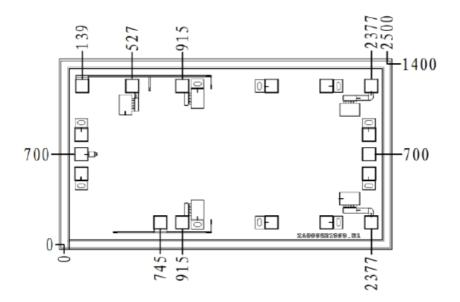

Electrical Characteristics (Ta = 25°C)

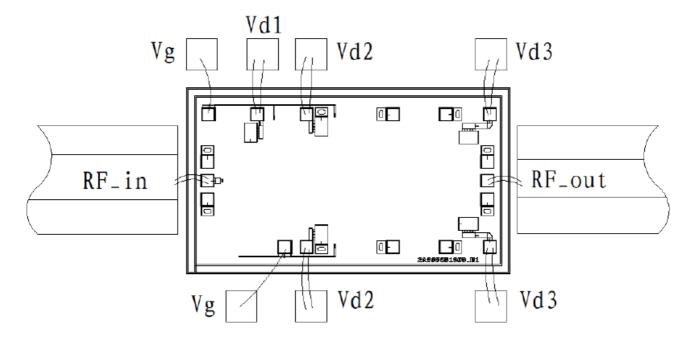

Symbol	Parameter	Test Condition	Value			Unit
			Min	Typical	Max	
G	Small Signal Gain		21	22	26	dB
Id	Operation Current	Vd = 8V, Vg=-0.6V	-	1.1	-	А
VSWR_in	Input SW	F : 13 ~ 18GHz	-	1.8	1.9	-
VSWR_out	Output SW		-	1.3	1.5	-
Gp	Power Gain	Vd = 8V, Vg=-0.6V	-	23.5	-	dB
Po(sat)	Saturated Output Power	F : 13 ~ 18GHz	-	33.5	-	dBm
PAE	Power Added Efficiency	Duty Cycle : 20%	-	30	-	%

Note, no CW operation.


Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Typical Performance




Freq,GHz

Chip Dimensions (Unit : µm)

Chip Layout Diagram

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

	Pad Definition						
Symbol	Function	Dimension	Equivalent Circuit				
RF_in	RF signal input port, connecting to external 50 Ω system. DC blocking capacitor is not needed, if external DC current is applied to this pad.	100*100µm²	RF_in ↔				
RF_out	RF signal output port, connecting to external 50 Ω system, no need to add DC blocking capacitor.	100*100µm²	- ↓ ↓ ↓ ↓ RF_out				
Vg	Amplifier gate bias, need external 100pF, 1000pF capacitor.	100*100μm²	Na Three				
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	100*100μm²					
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	100*100μm²					
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	100*100μm²	° ^{Vd3} ↓↓↓ ↓				

Please see Appendix A for details.