
AMT2113 13.5 – 18GHz Power Amplifier Chip

Key Features:

Frequency: 13.5 – 18GHz
Typical small signal gain: 31dB
Typical output power: 43dBm

• Typical power added efficiency: 35%

Supply voltage: 28V, -1.8V

• Chip dimensions: 2.95mm x 2.35mm x 0.1mm

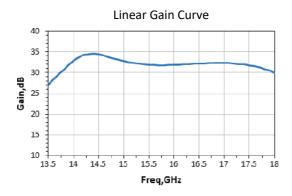
• Applications: wireless communication, transceiver module, radio telecommunication etc.

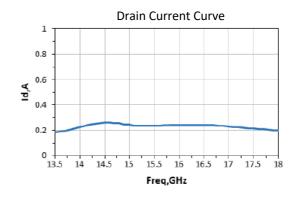
Description:

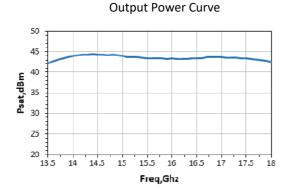
AMT2113 chip is a high performance high efficiency 13.5 – 18GHz power amplifier, it is designed based on Gallium Nitrate (GaN) HEMT process, with ground through metal via on the back technology. All chip products are 100% RF tested. AMT2113 is with dual voltage supply, drain voltage Vds at 28V, it provides 43dBm output power in 13.5 – 18GHz frequency range.

Absolute Maximum Ratings (Ta = 25°C)

Symbol	Parameter	Value	Remark
Vd	Drain Voltage	35V	
Id	Drain Current	4A	
Vg	Gate Voltage	-1.6V	
lg	Gate Current	150mA	
Pd	DC Power Consumption	100W	
Pin	Input Signal Power	30dBm	
Tch	Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N ₂ protection

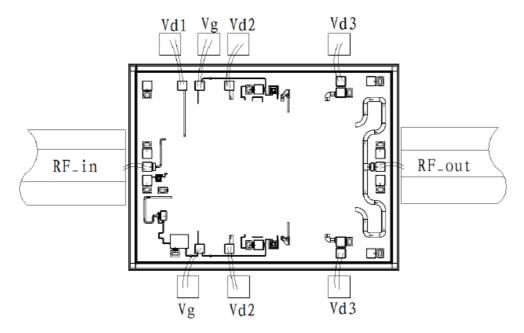

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Condition	Value		Unit	
			Min	Typical	Max	
Gain	Small Signal Gain	Vd = 28V	-	31	-	dB
VSWRin	Input SW		-	1.8	2	dB
Pout	Saturated Output Power	Vg = -1.8V	-	43	-	dBm
PAE	Power Added Efficiency	F: 13.5~18GHz	-	35	-	%
Id	Operating Current	Duty Cycle : 10%	-	2.3	2.5	Α

Note, under non-CW operation.

Typical Performance



Chip Dimension (Unit: µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	100*100μm²	RF_in O
RF_out	RF signal output port, connecting to external 50 $\!\Omega$ system, no need to add DC blocking capacitor.	100*100μm²	RF_out
Vg	Amplifier gate bias, need external 100pF, 1000pF capacitor.	100*100μm²	Vg V
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	100*100μm²	Vd1
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	100*100μm²	Vd2
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	100*100μm²	Vd3

Refer to Appendix A for details.