
AMT1211 7 – 13GHz Low Noise Amplifier Chip

Key Features:

• Frequency range: 7 – 13GHz

Typical gain: 25dB

• Input/output standing wave: 1.3

Noise figure: 1.5dB

P-1: 13dBm @ +5V/32mA

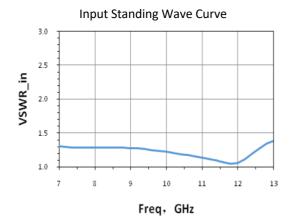
• Chip dimensions: 2mm x 1.65mm x 0.1mm

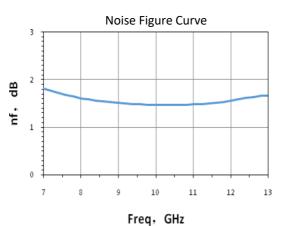
• Applications: wireless communication, transceiver module, radio telecommunication etc.

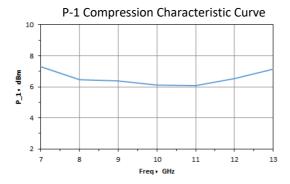
Description:

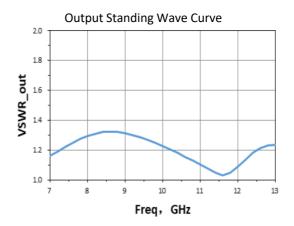
AMT1211 chip is a Gallium Arsenide (GaAs) high performance Low Noise Amplifier, it covers 7 – 13GHz frequency range. It uses +5V single voltage operation, Noise Figure is 1.5dB, and 25dB typical gain. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

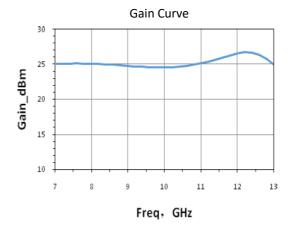
Absolute Maximum Ratings (Ta = 25°C)

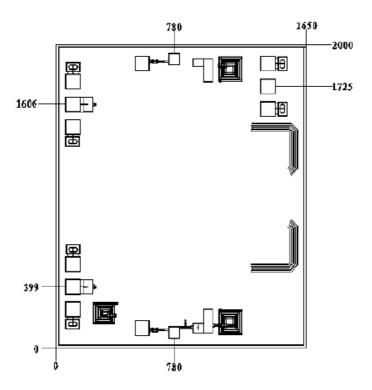

Symbol	Parameter	Value	Remark	
Vd	Drain Voltage	7V		
Pin	Input Signal Power	17dBm		
Tch	Operating Temperature	150°C		
Tm	Sintering Temperature	310°C	30s, N ₂ protection	
Tstg	Storage Temperature	-65 ~ +150°C		

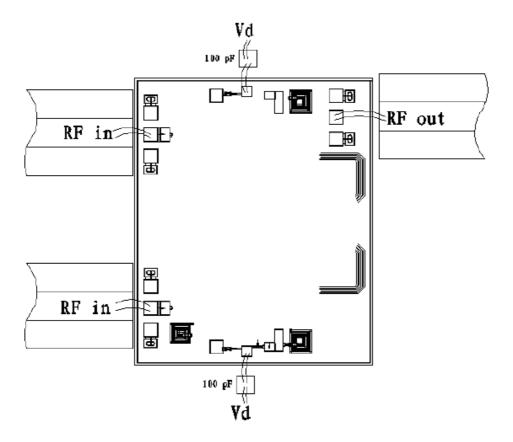

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Conditions	Value		Unit		
			Min	Typical	Max		
G	Gain		24	25	-	dB	
NF	Noise Figure		-	1.5	2	dB	
Id	Static Current	Vd = +5V	-	32	45	mA	
VSWR_in	Input Standing Wave	F : 7 ~ 13GHz	-	1.3	1.6		
VSWR_out	Output Standing Wave		-	1.3	1.6		
P-1	Output Power at 1dB point		9	13	-	dBm	

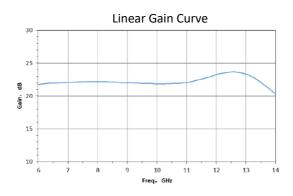

Typical Performance

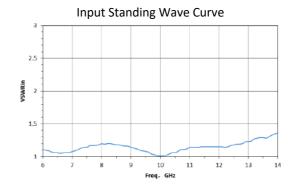


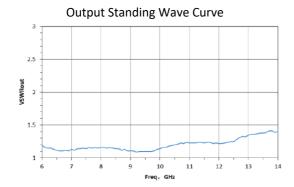


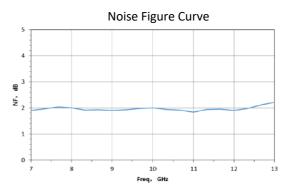
Chip Dimensions (Unit : μm)

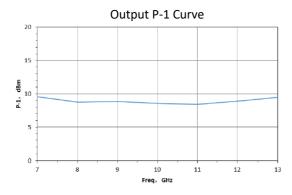
Chip Layout Diagram

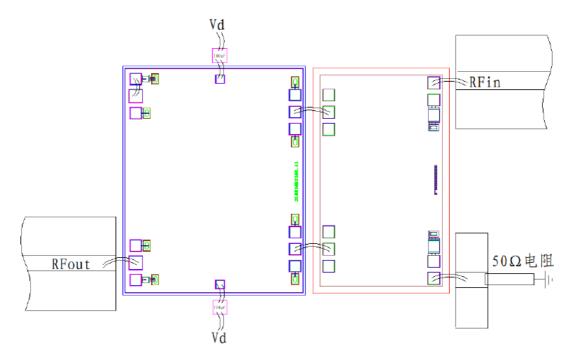

Pad Definition


Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 $\!\Omega$ system. no need to add DC blocking capacitor.	100*100μm²	RF_in ○
RF_out	RF signal output port, connecting to external 50Ω system, no need to add DC blocking capacitor.	100*100μm²	RF_out
Vd	Amplifier bias, need to connect external 100pF capacitor.	100*100μm²	+ = = = = = = = = = = = = = = = = = = =


[1] See next page for AMLM0008S balance limiter + AMLA0010S balance LNA chipset test.


Please see Appendix A for details.


Chipset Typical Test Curve



Chip Layout Diagram

