AMT1617(L2) DC - 40GHz Temperature Compensated Attenuator Chip

Key Features :

- Frequency range : DC 40GHz
- Input/output standing wave : 1.2/12.
- Room temperature insertion loss : <u>5.3dB@10GHz</u>, 5.5dB@25GHz
- Phase consistency : $\leq |\pm 2|^{\circ}@10$ GHz, $\leq |\pm 5|^{\circ}@25$ GHz
- Chip dimensions : 1.0mm x 0.75mm x 0.1mm
- Applications : wireless communication, transceiver module, radio telecommunication etc.

Description:

AMT1617(L2) is a temperature compensated attenuator chip, it is designed by Gallium Arsenide (GaAs) pHEMT process. Its core device is an electrical controlled attenuator whose attenuation is adjustable by a linear voltage, its control signal is generated by thermosensitive device. This chip is to stabilize the temperature-depended gain of a microwave amplifier.

Symbol	Parameter	Value	Remark
VSS	Operation voltage	-6V	
Pin	Input Power	20dBm	
Tch	Operation Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N ₂ protection
Tstg	Storage Temperature	-65 ~ +150°C	

Absolute Maximum Ratings (Ta = 25°C)

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

Electrical Characteristics (Ta = 25°C)

Symbol	Parameter	Value			Unit	
			Min	Typical	Max	
F	Frequency range	DC - 40			GHz	
IL	Insertion Loss	F = 10GHz	-	5.3	6.2	dB
		F = 25GHz	-	5.5	6.5	
ΔP	Phase consistency	F = 10GHz	-2	-	2	0
		F = 25GHz	-5	-	5	
VSWRin	Input Standing Wave	F = 1~40GHz	-	1.2	1.3	-
VSWRout	Output Standing Wave	F = 1~40GHz	-	1.2	1.3	-

¹

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Typical Performance

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Chip Dimensions (Unit : µm)

Chip Layout Diagram

Pad Definition

No.	Symbol	Function	Dimension
1	RF_in	RF input pad	100µm*100µm
2	RF_out	RF output pad	100µm*100µm
3	VSS	-5V power supply	100µm*100µm

Please see Appendix A for details.

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.