
AMT1103 7 – 13GHz Power Amplifier Chip

Key Features:

Frequency range: 7 – 13GHz
Small signal gain: 22.5dB

• Saturated output power: 22.5dBm

Voltage bias: +5V, 120mA

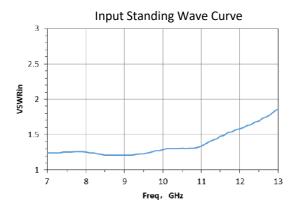
• Chip dimensions: 1.35mm x 1.35mm x 0.1mm

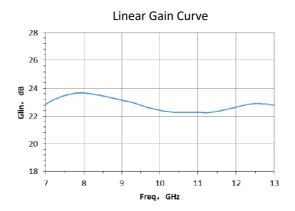
• Applications: wireless communication, transceiver module, radio telecommunication etc.

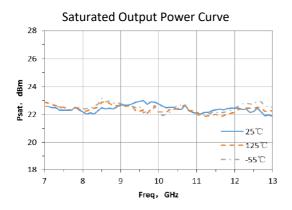
Description:

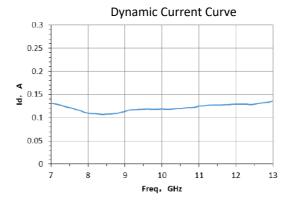
AMT1103 chip is a Gallium Arsenide (GaAs) designed power amplifier chip, with a wide frequency range of 7 – 13GHz, single voltage operation, drain voltage Vds at 5V, linear gain of 22.5dB, saturated output power of 22.5dBm. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

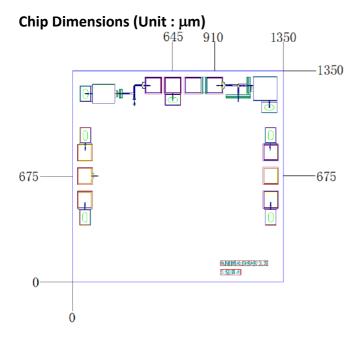
Absolute Maximum Ratings (Ta = 25°C)

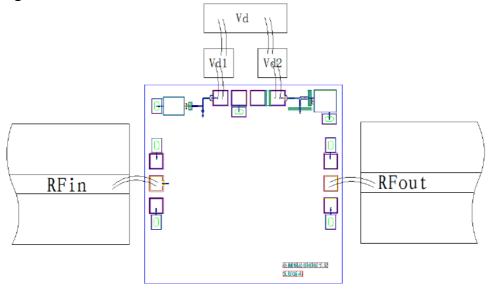

<u> </u>						
Symbol	Parameter	Value	Remark			
Vd	Drain Voltage	+11V				
Pin	Input Signal Power	15dBm				
Tch	Operating Temperature	-55 ~ +125°C				
Tm	Sintering Temperature	310°C	30s, N ₂ protection			
Tstg	Storage Temperature	-65 ~ +150°C				


^[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Condition	Value		Unit	
			Min	Typical	Max	
G	Small Signal Gain	Vd = 5V	-	22.5	24	dB
Id	Operating Current	F : 7-13GHz	=	120	ı	mA
VSWR_in	Input SW		-	1.5	ı	
Gp	Power Gain	Vd = 5V		18.5	ı	dB
Po(sat)	Saturated Output Power	F: 7-13GHz	-	22.5	-	dBm
		Duty Cycle: 10%				


Typical Performance



Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 $\!\Omega$ system. Built in internal DC blocking capacitor.	90*100μm²	RF-in
RF_out	RF signal output port, connecting to external 50Ω system, Built in internal DC blocking capacitor.	90*100μm²	RF_out
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	100*100μm²	-P_H-IP → Vd1
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	106*100μm²	- Vd2

Please see Appendix A for details.