AMT1212 7 – 13GHz Low Noise Amplifier Chip

Key Features :

- Frequency range : 7 13GHz
- Typical gain : 20dB
- Input/output standing wave : 1.5/1.3
- Noise figure : 0.9dB
- P-1 : 5dBm @ +5V/20mA
- Chip dimensions : 1.9mm x 1.05mm x 0.1mm
- Applications : wireless communication, transceiver module, radio telecommunication etc.

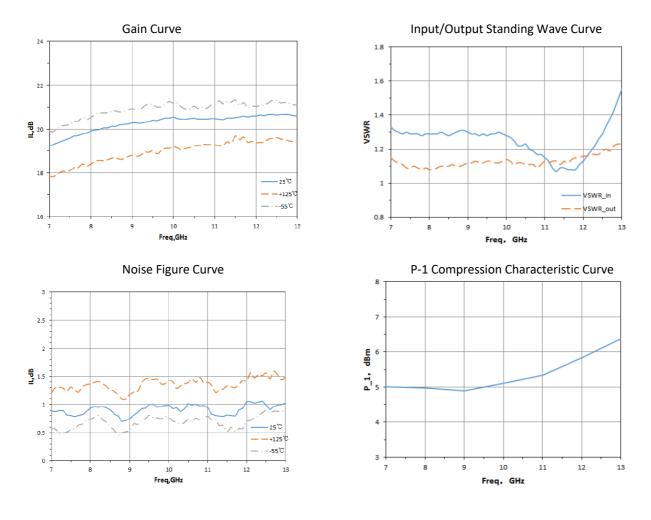
Description:

AMT1212 chip is a Gallium Arsenide (GaAs) high performance Low Noise Amplifier, it covers 7 – 13GHz frequency range. It uses +5V single voltage operation, Noise Figure is 0.9dB, and 20dB typical gain. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

Symbol	Parameter	Value	Remark			
Vd	Drain Voltage	+7V				
Pin	Input Signal Power	17dBm				
Tch	Operating Temperature	150°C				
Tm	Sintering Temperature	310°C	30s, N ₂ protection			
Tstg	Storage Temperature	-65 ~ +150°C				

Absolute Maximum Ratings (Ta = 25°C)

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

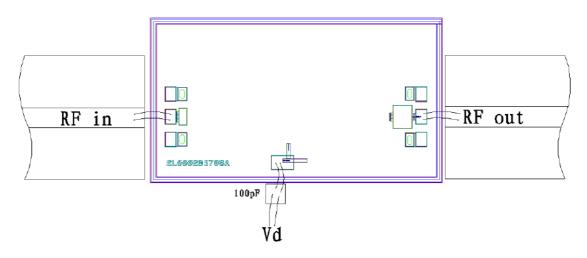

Electrical Characteristics (Ta = 25°C)

Symbol	Parameter	Test Conditions	Value		Unit	
			Min	Typical	Max	
G	Gain		-	20	-	dB
NF	Noise Figure		-	0.9	1	dB
Id	Static Current	Vd = +5V	-	16	-	mA
VSWR_in	Input Standing Wave	F : 7 ~ 13GHz	-	1.3	1.5	-
VSWR_out	Output Standing Wave		-	1.2	1.3	-
P-1	Output Power at 1dB point		4.5	5	-	dBm

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.


¹

Typical Performance



Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Chip Dimensions (Unit : µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 Ω system. no need to add DC blocking capacitor.	100*75µm²	RF₋in ↔
RF_out	RF signal output port, connecting to external 50 Ω system, no need to add DC blocking capacitor.	100*75µm²	-↓-↓ RF_out
Vd	Amplifier bias, need to connect external 100pF capacitor.	150*95μm²	

Please see Appendix A for details.

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.