12 ~ 18GHz Switch Power Amplifier Chip

Key Features:

Frequency range: 12~18GHz
Typical small signal gain: 29dB

• Typical output power : 42dBm

• Typical added efficiency : 28%

Supply Voltage: 28V, -1.8V

Chip dimensions: 4.0mm*2.9mm*0.1mm

Application: microwave transceiver, wireless communication etc.

Description:

AMT2401 chip is a high performance $12 \sim 18 \, \text{GHz}$ switch power amplifier, it is designed by Gallium Nitrate (GaN) HEMT process, with ground through metal via on the back technology. All chip products are 100% RF tested. AMT2401 chip is with dual voltage supply, drain voltage Vds = 28V, provides 42dBm output power in $12 \sim 18 \, \text{GHz}$ frequency range.

Absolute Maximum Ratings (Ta = 25°C)

Symbol	Parameter	Value	Remark
Vd	Drain Voltage	35V	
Id	Drain Current	5A	
Vg	Gate Voltage	-1.5V	
lg	Gate Current	150mA	
Pd	DC Power Consumption	120W	
Pin	Input Signal Power	30dBm	
Tch	Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N ₂ protection

^[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage

Electrical Characteristics (Ta = 25°C)

Symbol	Parameter Test Condition		Value			Unit
			Min	Typical	Max	
G∟	Small Signal Gain	Transmit :	=	29	ı	dB
G_{P}	Power Gain	VD : 28V, VG : -1.8V	-	20	=	dB
Pout	Saturated Output Power	VCT : -28V, VCR : 0V	-	42	-	dBm
PAE	Power Added Efficiency	F : 12~18GHz	=	28	=	%
Id	Operating Current	Duty Cycle : 10%	-	1.9	=	Α
IL	Insertion Loss	Receive :	-	1.2	-	dB
IRL	Input Return Loss	VCT : 0V, VCR : -28V	-	-1.5	=	dB
ORL	Output Return Loss	F : 12~18GHz	=	-1.5	=	dB
ISO	Isolation		-	-30	-	dB

12 ~ 18GHz Switch Power Amplifier Chip

Typical Performance

Transmit Power Consumption Curve

Power Curve under Different Transmit Duty Cycle

12 ~ 18GHz Switch Power Amplifier Chip

Efficiency Curve under Different Transmit Duty Cycle

Receive Return Loss Curve

Receive Insertion Loss Curve

Switch Isolation Curve

12 ~ 18GHz Switch Power Amplifier Chip

Chip Dimension (Unit: μ m)

Chip Layout Diagram

12 ~ 18GHz Switch Power Amplifier Chip

Internal Function Diagram

Pad Definition

Symbol	Function	Dimension	
T_RF_in	Transmit RF signal input port	100*100μm²	
R_RF_out	Receive RF signal output port	100*100μm²	
COM	Transmit RF output port/Receive RF input port	100*100μm²	
VG	Power amplifier gate supply port	150*150μm²	
VD1	Power amplifier first stage drain supply port	150*150μm²	
VD2	Power amplifier second stage drain supply port	150*150μm²	
VD3	Power amplifier third stage drain supply port	150*150μm²	
VCT	Switch control voltage supply port 100*100		
VCR	Switch control voltage supply port 100*100µm		

Truth Table

VCT	VCR	Operation Status	
0	1	Transmit link operates	
1	0	Receive link operates	

Note, "1" is high level 0V, "0" is low level -40V.

Please see Appendix A for details.