AMT1111 8 – 12GHz Power Amplifier Chip

Key Features :

- Frequency range : 8 12GHz
- Typical small signal gain : 29dB
- Typical output power : 34dBm
- Typical power added efficiency (PAE) : 45%
- Voltage bias : 5.0V, -0.7V
- Chip dimensions : 3.6mm x 2.2mm x 0.1mm
- Applications : wireless communication, transceiver module, radio telecommunication etc.

Description :

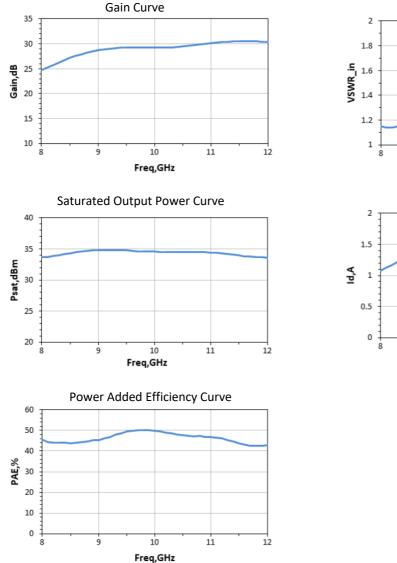
AMT1111 chip is designed by Gallium Arsenide (GaAs) pHEMT process, a high performance 8 - 12GHz power amplifier, it uses dual voltage operation, with drain voltage Vds at 5.0V, it offers 34dBm power output in a frequency range of 8 – 12GHz. This chip is designed with ground through metal vias on the back technology. All chip products are 100% RF tested.

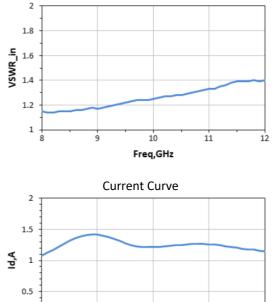
	Absolute Maximum Natings (1a – 25 C)						
Symbol	Parameter	Value	Remark				
Vd	Drain Voltage	9V					
Id	Drain Current	6A					
Vg	Gate Voltage	-0.45V					
lg	Gate Current	100mA					
Pd	Power Dissipation	45W					
Pin	Input Signal Power	25dBm					
Tch	Operating Temperature	175°C					
Tm	Sintering Temperature	310°C	30s, N ₂ protection				
Tstg	Storage Temperature	-65 ~ 150°C					

Absolute Maximum Ratings (Ta = 25°C)

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Condition	Value			Unit
			Min	Typical	Max	
G	Small Signal Gain		25	29	-	dB
VSWR_in	Input Standing Wave	Vd = 5.0V	-	1.4	2	
Pout	Saturated Power Output	Vg = -0.7V	-	34	-	dBm
PAE	Power Added Efficiency	F : 8 ~ 12GHz	-	45	-	%

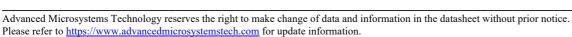

Note, no CW operation.

¹

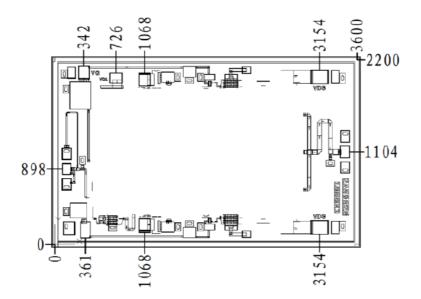
Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Typical Performance

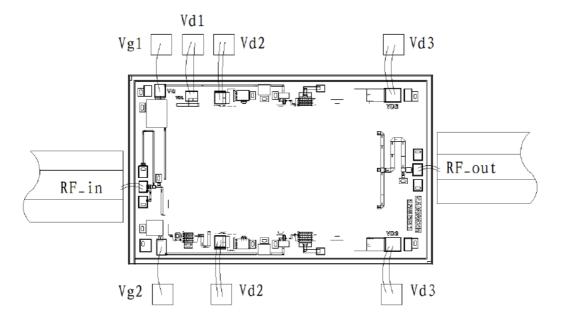
10


Freq,GHz

11


12

ģ


Input Standing Wave Curve

Chip Dimensions (Unit : µm)

Chip Layout Diagram

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

	Pad Definition							
Symbol	Function	Dimension	Equivalent Circuit					
RF_in	RF signal input port, connecting to external 50 Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	100*128μm²	RF₋in ↔					
RF_out	RF signal output port, connecting to external 50 Ω system, no need to add DC blocking capacitor.	110*138μm²	-↓-↓ RF_out					
Vg1	Amplifier gate bias, need external 100pF, 1000pF capacitor.	125*154μm²	Vg1 o "HHLJ J					
Vg2	Amplifier gate bias, need external 100pF, 1000pF capacitor.	115*190µm²						
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	143*118μm²						
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	128*152μm²						
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	200*160μm²						

Please see Appendix A for details.

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.