
AMT1718 6 – 26GHz Mixer Chip

Key Features:

Radio frequency: 6 – 26GHz

• Intermediate frequency bandwidth: DC – 12GHz

Conversion loss: 10dBLO/RF isolation: 30dB

• P1dB: +12dBm

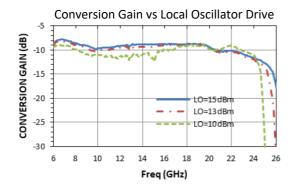
• Chip dimensions: 1.44mm x 1.07mm x 0.1mm

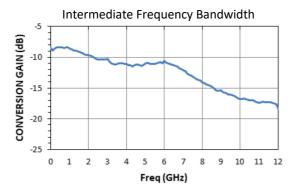
• Applications: wireless communication, transceiver module, radio telecommunication etc.

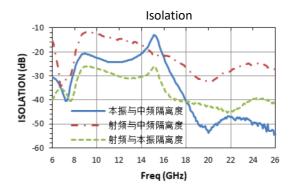
Description:

AMT1718 is a high performance 6 – 26GHz mixer chip, it is designed by Gallium Arsenide (GaAs) pHEMT process. This chip is designed with ground through metal vias on the back technology. All chip products are 100% RF tested. AMMX0001S does not require direct current bias.

Absolute Maximum Ratings (Ta = 25°C)

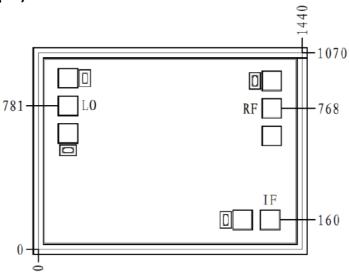

Symbol	Parameter	Value	Remark		
P_RF	Radio input power	24dBm			
P _{IF}	Intermediate frequency input power	24dBm			
P_{LD}	Local oscillator input power	24dBm			
Tch	Operation Temperature	150°C			
Tm	Sintering Temperature	310°C	30s, N ₂ protection		
Tstg	Storage Temperature	-65 ~ +150°C			

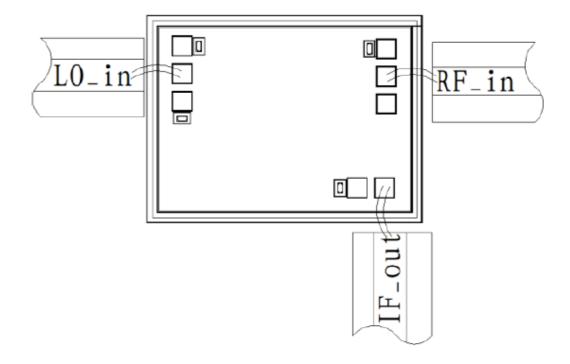

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)

Parameter	Value			Unit
	Min	Typical	Max	
Radio Frequency/Local Oscillator Frequency range	6	-	26	GHz
Intermediate Frequency range	DC	-	12	GHz
Conversion loss	-	10	-	dB
Isolation LO to RF	-	30	-	dB
Isolation LO to IF	-	20	-	dB
Isolation RF to IF	-	10	-	dB
Input power at 1dB compression point	-	12	-	dBm

Typical Performance





Chip Dimensions (Unit: μ m)

Chip Layout Diagram

Pad Definition

Symbol	Function Description	Dimension	Equivalent Circuit
LO_in	Local oscillator signal input port, external connect to 50Ω system;	100μm*100μm	L0-in ○———
	if direct current is applied, no need DC blocking capacitor.		
RF_in	RF signal input port, external connect to 50Ω system; if direct	100μm [*] 100μm	RF_in ○──
	current is applied, no need DC blocking capacitor.		
IF_out	Intermediate frequency signal output port, external connect to	100μm*100μm	IF_out ○——
	50Ω system; if direct current is applied, no need DC blocking		, ,
	capacitor.		

Please see Appendix A for details.