
#### **AMT1320**

## 8.5 - 10.5GHz Transceiver Integrated Multi-Function Chip



#### **Key Features:**

Frequency range: 8.5 – 10.5GHz

Receiver gain: 10.5dBReceiver noise figure: 3dB

Receive input/output standing wave: 1.5/1.5

Receiver output power at P-1 : 9dBm
Receiver power dissipation : 5V/14mA

• Transmitter gain: 7dB

Transmit input/output standing wave : 1.5/1.5
 Transceiver output power at P-1 : 20.5dBm
 Transceiver power dissipation : 5V/100mA

Switch control method : TTL

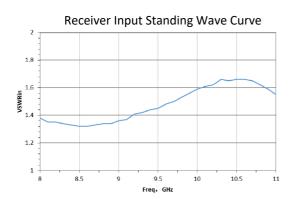
• Chip dimensions: 2.15mm x 2.25mm x 0.1mm

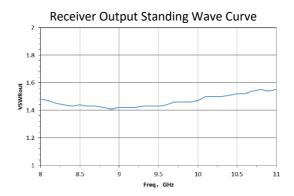
• Applications: wireless communication, transceiver module, radio telecommunication etc.

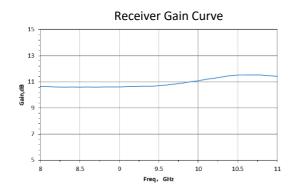
#### **Description:**

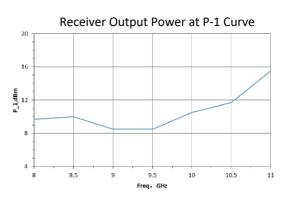
AMT1320 is a high performance transceiver multi-function chip, frequency range is  $8.5-10.5 \, \mathrm{GHz}$ , it integrates switch and bi-directional power amplifier, receiver gain is  $10.5 \, \mathrm{dB}$ , noise figure is  $3 \, \mathrm{dB}$ , transmitter gain is  $7 \, \mathrm{dB}$ , and transmitter output power at P-1 is  $20.5 \, \mathrm{dBm}$ . It is designed by Gallium Arsenide (GaAs) process. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

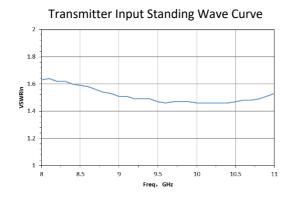
### Absolute Maximum Ratings (Ta = 25°C)

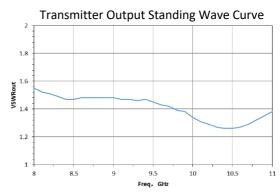

| Symbol | Parameter               | Value        | Remark             |
|--------|-------------------------|--------------|--------------------|
| VD     | Drain voltage           | +7V          |                    |
| VEE    | Driver supply voltage   | -6V          |                    |
| Pin    | Max. Input Signal Power | 25dBm        |                    |
| Tch    | Operation Temperature   | 150°C        |                    |
| Tm     | Sintering Temperature   | 310°C        | 30s, N₂ protection |
| Tstg   | Storage Temperature     | -65 ~ +150°C |                    |

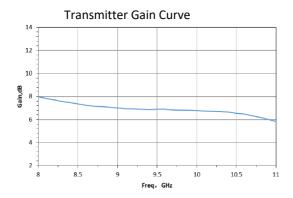

<sup>[1]</sup> Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

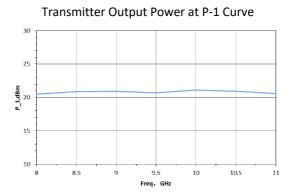

**Electrical Characteristics (Ta = 25°C)** 


| Symbol             | Parameter                             | <b>Test Conditions</b> | Value |         |     | Unit |
|--------------------|---------------------------------------|------------------------|-------|---------|-----|------|
|                    |                                       |                        | Min   | Typical | Max |      |
| $G_R$              | Receiver gain                         | F: 8.5 ~ 10.5GHz       | -     | 10.5    | -   | dB   |
| NF                 | Receiver noise figure                 | VD1 = 0V               | -     | 3       | -   | dB   |
| VSWR <sub>RX</sub> | Receiver input standing wave          | VD2 = +5V              | 1     | 1.5     | 1   | -    |
| VSWR <sub>RX</sub> | Receiver output standing wave         | VEE = -5V              | -     | 1.5     | -   | -    |
| P <sub>R-1dB</sub> | Receiver output power at P-1 point    | SW = 0V                | •     | 9       | •   | dBm  |
| $G_T$              | Transmitter gain                      | F: 8.5 ~ 10.5GHz       | -     | 7       | -   | dB   |
| $VSWR_{TX}$        | Transmitter input standing wave       | VD1 = +5V              | -     | 1.5     | -   | -    |
| VSWR <sub>TX</sub> | Transmitter output standing wave      | VD2 = 0V               | ı     | 1.5     | ı   | -    |
| P <sub>T-1dB</sub> | Transmitter output power at P-1 point | VEE = -5V              | -     | 20.5    | -   | dBm  |
|                    |                                       | SW = +5V               |       |         |     |      |

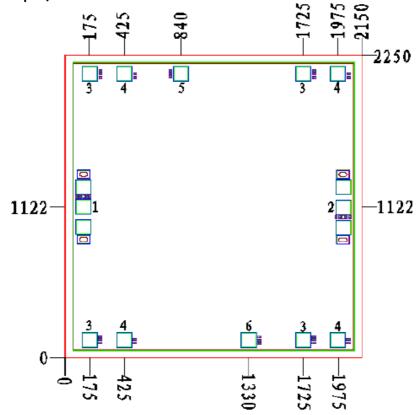

## **Typical Performance**



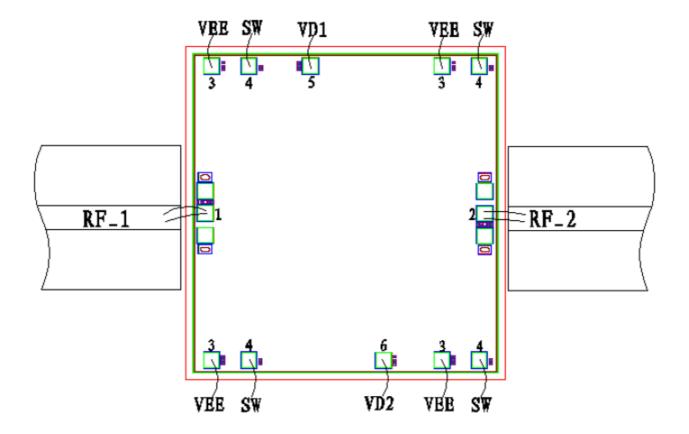










# Chip Dimensions (Unit : $\mu m$ )



## **Chip Layout Diagram**



**Usage Description** 

| Symbol | Function Description                                                                                       | Dimensions    |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
| RF_1   | Transmitter RF signal input port/Receiver RF signal output port, external connecting to $50\Omega$ system. | 100μm * 100μm |  |  |  |
| RF_2   | Receiver RF signal input port/Transmitter RF signal output port, external connecting to $50\Omega$ system. | 100μm * 100μm |  |  |  |
| VEE    | 0V/-5V voltage control                                                                                     | 100μm * 100μm |  |  |  |
| SW     | 0V/-5V voltage control                                                                                     | 100μm * 100μm |  |  |  |
| VD1    | Transmitter channel voltage bias                                                                           | 100μm * 100μm |  |  |  |
| VD2    | Receiver channel voltage bias                                                                              | 100μm * 100μm |  |  |  |

Please see appendix A for details.