
AMT2111 8 – 13GHz Power Amplifier Chip

Key Features:

Frequency: 8 – 13GHz

Typical small signal gain: 31dBTypical output power: 45dBm

• Typical power added efficiency: 40%@8.5-12GHz

30%@8-8.5GHz / 12-13GHz

Supply voltage: 27V, -1.5V

• Chip dimensions: 3.7mm x 3.3mm x 0.1mm

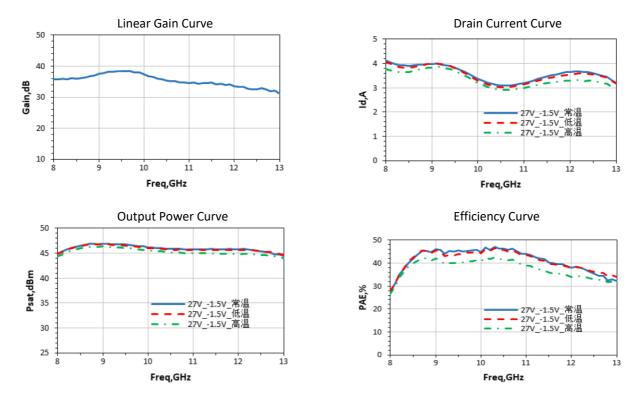
• Applications: wireless communication, transceiver module, radio telecommunication etc.

Description:

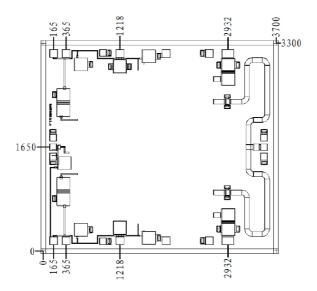
AMT2111 chip is a high performance high efficiency $8-13 \, \mathrm{GHz}$ power amplifier, it is designed based on Gallium Nitrate (GaN) HEMT process, with ground through metal via on the back technology. All chip products are 100% RF tested. AMT2111 is with dual voltage supply, drain voltage Vds at 27V, it provides 46dBm output power in $8-13 \, \mathrm{GHz}$ frequency range.

Absolute Maximum Ratings (Ta = 25°C)

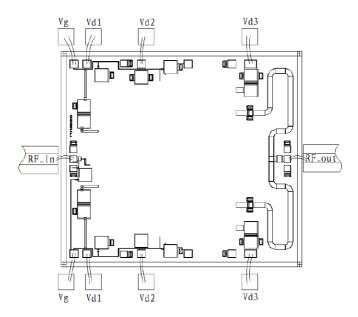
Symbol	Parameter	Value	Remark
Vd	Drain Voltage	35V	
Id	Drain Current	5A	
Vg	Gate Voltage	-1.2V	
lg	Gate Current	150mA	
Pd	DC Power Consumption	120W	
Pin	Input Signal Power	30dBm	
Tch	Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N₂ protection


[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Condition	Value			Unit
			Min	Typical	Max	
Gain	Small Signal Gain		-	31	-	dB
VSWRin	Input SW	Vd = 27V Vg = -1.5V	-	-	2	dB
Psat	Saturated Output Power		-	45	-	dBm
PAE	Power Added Efficiency	F : 8~13GHz		40%@8.5-12GHz		
		Duty Cycle: 10%	-	30%@8-8.5/12-13GHz	-	%
Id	Operating Current		3	3.5	4	Α

Note, under non-CW operation.


Typical Performance

Chip Dimension (Unit: µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	100*100μm²	RF-in
RF_out	RF signal output port, connecting to external 50Ω system, no need to add DC blocking capacitor.	100*100μm²	RF_out
Vg	Amplifier gate bias, need external 100pF, 1000pF capacitor.	120*120μm²	Vg V
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	120*120μm ²	Vd1 →
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	120*120μm²	₩ Vd2
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	180*120μm²	-√1 Vd3

Refer to Appendix A for details.