
AMT2108 8 – 12GHz Power Amplifier Chip



### **Key Features:**

Frequency: 8 – 12GHz

Typical small signal gain : 30dBTypical output power : 46dBm

• Typical power added efficiency: 42%

Supply voltage: 28V, -2V

• Chip dimensions: 4.4mm x 3.6mm x 0.1mm

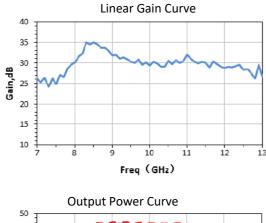
• Applications: wireless communication, transceiver module, radio telecommunication etc.

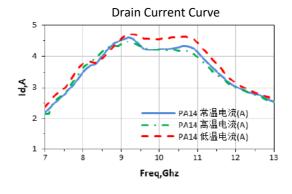
### **Description:**

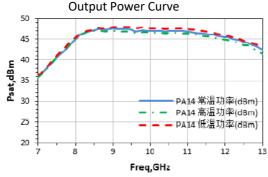
AMT2108 chip is a high performance high efficiency  $8-12 \, \mathrm{GHz}$  power amplifier, it is designed based on Gallium Nitrate (GaN) HEMT process, with ground through metal via on the back technology. All chip products are 100% RF tested. AMT2108 is with dual voltage supply, drain voltage Vds at 28V, it provides 46dBm output power in  $8-12 \, \mathrm{GHz}$  frequency range.

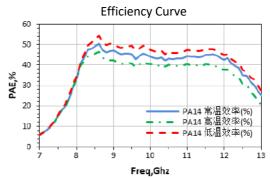
### Absolute Maximum Ratings (Ta = 25°C)

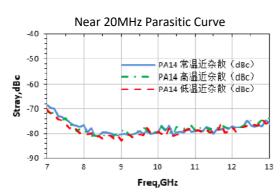
| Symbol | Parameter             | Value | Remark             |
|--------|-----------------------|-------|--------------------|
| Vd     | Drain Voltage         | 35V   |                    |
| Id     | Drain Current         | 5A    |                    |
| Vg     | Gate Voltage          | -1.6V |                    |
| lg     | Gate Current          | 150mA |                    |
| Pd     | DC Power Consumption  | 120W  |                    |
| Pin    | Input Signal Power    | 30dBm |                    |
| Tch    | Operating Temperature | 150°C |                    |
| Tm     | Sintering Temperature | 310°C | 30s, N₂ protection |

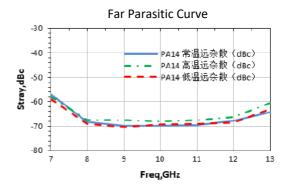

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


### **Electrical Characteristics (Ta = 25°C)**

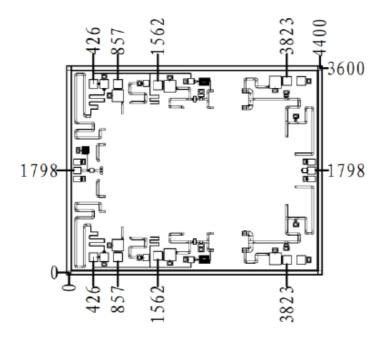

| Symbol | Parameter              | Parameter Test Condition Value |     |         | Unit |     |
|--------|------------------------|--------------------------------|-----|---------|------|-----|
|        |                        |                                | Min | Typical | Max  |     |
| Gain   | Small signal gain      |                                | -   | 30      | -    | dB  |
| VSWRin | Input standing wave    | Vd = 28V                       | -   | 1.8     | 2    | dB  |
| Pout   | Saturated output power | Vg = -2V                       | -   | 46      | -    | dBm |
| PAE    | Power added efficiency | F : 8~12GHz                    | -   | 42      | -    | %   |
| Id     | Operating Current      | Duty Cycle : 10%               | -   | 3.5     | 4.3  | А   |


Note, under non-CW operation.

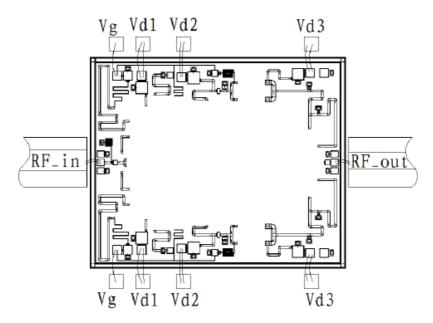

## **Typical Performance**










# Chip Dimension (Unit: µm)



## Chip Layout Diagram



## **Pad Definition**

| Symbol | Function                                                                                                                                         | Dimension  | <b>Equivalent Circuit</b> |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------|
| RF_in  | RF signal input port, connecting to external 50 $\Omega$ system. DC blocking capacitor is needed, if external DC current is applied to this pad. | 120*110μm² | RF-in                     |
| RF_out | RF signal output port, connecting to external $50\Omega$ system, no need to add DC blocking capacitor.                                           | 130*120μm² | RF_out                    |
| Vg     | Amplifier gate bias, need external 100pF, 1000pF capacitor.                                                                                      | 150*150µm² | Vg AHL                    |
| Vd1    | Amplifier drain bias, need external 100pF, 1000pF capacitor.                                                                                     | 150*150μm² | - Vd1                     |
| Vd2    | Amplifier drain bias, need external 100pF, 1000pF capacitor.                                                                                     | 150*150μm² | Vd2                       |
| Vd3    | Amplifier drain bias, need external 100pF, 1000pF capacitor.                                                                                     | 150*150μm² | Vd3                       |

Please see Appendix A for details.