AMT1809-01 6 - 18GHz 25dB Directional Coupler Chip

Key Features:

Frequency range: 6 – 18GHz
Input/output standing wave: 1.3

Insertion loss: 0.4dBCoupling: 25dB

Coupling flatness: 3dB

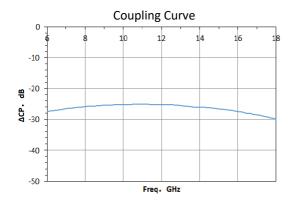
• Chip dimensions: 2mm x 1.3mm x 0.1mm

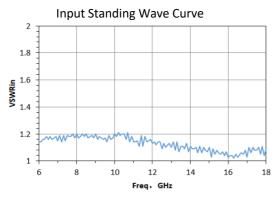
• Applications: wireless communication, transceiver module, radio telecommunication etc.

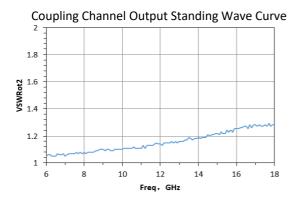
Description:

AMT1809-01 is a wideband directional coupler chip, it is designed by Gallium Arsenide (GaAs) process. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested. It covers frequency range of 6 - 18GHz, port standing wave is smaller than 1.3, insertion loss less than 0.4dB, coupling is 25dB, and less than 3dB coupling flatness.

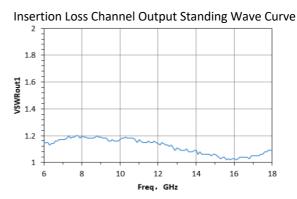
Absolute Maximum Ratings (Ta = 25°C)

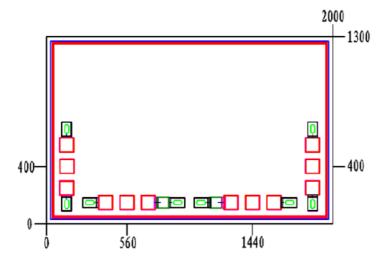

Symbol	Parameter	Value	Remark
Pin	Input Power	30dBm	
Tch	Channel Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N ₂ protection
Tstg	Storage Temperature	-65 ~ +150°C	


[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

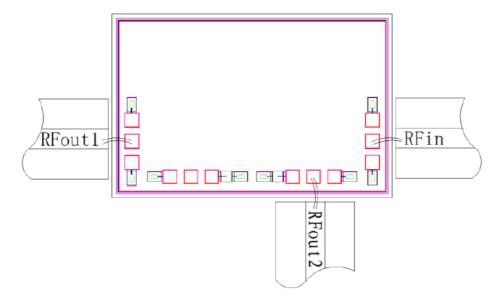

Electrical Characteristics (Ta = 25°C)

Symbol	Parameter	Test Condition	Value		Unit	
			Min	Typical	Max	
VSWRin	Input standing wave		-	1.3	-	-
VSWRout1	Direct port output standing wave	F : 6 ~ 18GHz	-	1.3	-	ı
VSWRout2	Coupling port output standing wave		-	1.3	-	ı
IL	Insertion Loss		-	0.4	-	dB
ΔCP	Coupling		-	25	-	dB


Typical Performance






Chip Dimensions (Unit: µm)

Chip Layout Diagram

Recommended Assembly Option 1

Recommended Assembly Option 2

Note, customer can choose different coupling port, depending on different input and output direction, each coupling port has a $50\,\Omega$ load.

Pad Definition

No.	Symbol	Function Description	Dimension	
1	RFin	RF signal input port, external connect to 50Ω system	100μm*100μm	
2	RFout1	RF signal direct output port, external connect to 50Ω system	100μm*100μm	
3	RFout2	RF signal coupling output port , external connect to 50Ω system	100μm*100μm	

Please see Appendix A for details.