
AMT1623 6 – 18GHz Voltage Controlled Attenuator Chip

Key Features:

• Frequency range: 6 – 18GHz

Insertion loss: 3dBAttenuation: 2.8 – 30dB

• Input/output standing wave: 1.5/1.5

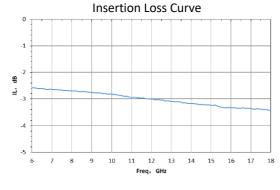
• Chip dimensions: 1.8mm x 0.8mm x 0.1mm

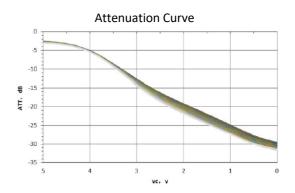
• Applications: wireless communication, transceiver module, radio telecommunication etc.

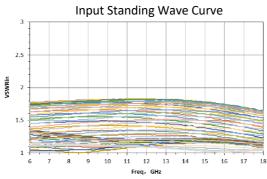
Description:

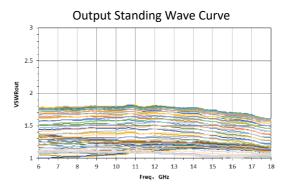
AMT1623 is a voltage controlled attenuator chip, it is designed by Gallium Arsenide (GaAs) pHEMT process. It covers frequency range of 6 – 18GHz, typical insertion loss is 3dB, attenuation is 2.8 - 30dB. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested. This chip is for microwave transceiver module, to realize transceiver signal amplitude control function.

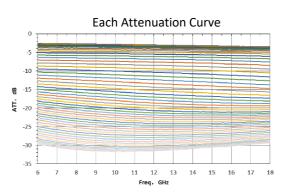
Absolute Maximum Ratings (Ta = 25°C)

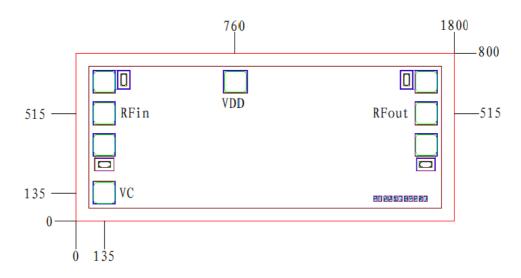

Symbol			
Pin	Max. input signal power	+20dBm	
VC	Control voltage	-0.5V ~ 7V	
Tch	Operation Temperature	-55 ~ 125° c	
Tstg	Storage Temperature	-65 ~ 150°C	

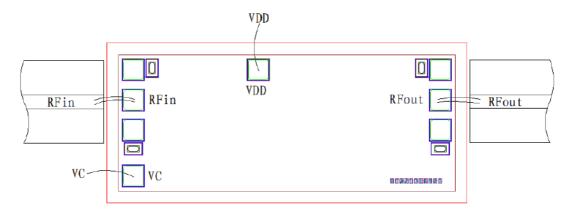

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Value			Unit
		Min	Typical	Max	
F	Frequency range		6 - 18		GHz
IL	Insertion loss	-	3	-	dB
ATT	Attenuation		2.5 - 30		dB
VSWRin	Input standing wave	-	1.5	-	-
VSWRout	Output standing wave	-	1.5	-	-


Typical Performance





Chip Dimensions (Unit: μ m)

Chip Layout Diagram

Pad Definition

No.	Symbol	Function	Dimension
1	RFin	RF signal input port, external connect to 50Ω system, internal built in DC blocking capacitor	100μm*100μm
2	RFout	RF signal output port, external connect to 50Ω system, internal build in DC blocking capacitor	100μm*100μm
3	VDD	+5V supply voltage	100μm*100μm
4	VC	Control port, 0 - +5V, 0V is max. attenuation, +5V is initial state	100μm*100μm

Please see Appendix A for details.