AMT1811 FET Driver Chip

Key Features:

• Operation method: convert pulse signal input into complementary signal output

Operation voltage : -5V

• Input level: TTL level compatible

Output level : 0/-4.8VStatic current : 2.9mA

• Chip dimensions: 0.55mm x 0.55mm x 0.1mm

• Applications: wireless communication, transceiver module, radio telecommunication etc.

Description:

AMT1811 is a FET driver chip, it is designed by Gallium Arsenide (GaAs) process. This chip is designed with ground through metal vias on the back technology.

Absolute Maximum Ratings (Ta = 25°C)

Symbol	Parameter	Value	Remark			
V_{EE}	Supply voltage	-6V				
V _{IH}	Input high level	5.5V				
V_{IL}	Input low level	-0.5V				
Tch	Operation Temperature	150°C				
Tm	Sintering Temperature	310°C	30s, N ₂ protection			
Tstg	Storage Temperature	-65 ~ +150°C				

^[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

Electrical Characteristics (Ta = 25°C

Symbol	Parameter	Value			Unit	Remark
		Min	Typical	Max		
V_{EE}	Supply voltage	-5.5	-5	-4.5	V	Chip normal operation voltage
I _{EE}	Static current	-	2.9	1	mA	Chip power on current
V _{IH}	Input high level	1.8	5	5	V	A1 lead input voltage,
V _{IL}	Input low level	0	0	1.2	V	compatible with TTL level
II	Input current	-	0.02	0.5	mA	-
V _{OH}	Output high level	-	0	-	V	Output port 1A and its reverse
V _{OL}	Output low level	-	-4.8	-	V	port 1B output voltage
Io	Output (drive) current	-	1	-	mA	Related to load
F	Frequency range	-	10	-	MHz	Related to load

Chip Dimensions (Unit : µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	PAD Dimension	Description
VEE	Supply voltage input port	85*81μm	Connect to -5V voltage
IN	Pulse input port	85*81μm	Supportable maximum frequency is determined by load
Α	Pulse output port	85*81μm	Same as input pulse level
В	Pulse output port	85*81μm	Opposite to input pulse level

Truth Table

Input	Output				
IN	A	В			
Li	Lo	Но			
Hi	Но	Lo			

Note, take 0/5V input pulse level and -5V supply voltage for example, Li represents 0V, Hi represents 5V, Lo represent -4.8V, Ho represents 0V.