
AMT1315

8 - 12GHz Transceiver Integrated Multi-Function Chip

Key Features:

• Receiver frequency: 8 – 12GHz

Receiver gain : 24dBReceiver noise : 2.7dB

Receiver clipper endurance power : 30dBm
Receiver input/output standing wave : 1.8

Transmitter frequency: 8 – 12GHz
Transmitter insertion loss: 1.2dB

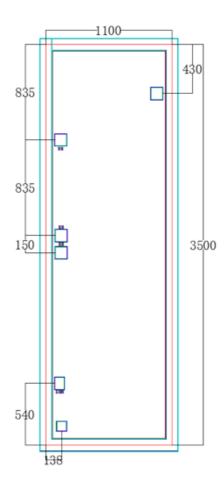
Transmitter output power at P-1: 31dBm
Transmit input/output standing wave: 1.8
Chip dimensions: 1.1mm x 3.5mm x 0.1mm

Applications: wireless communication, transceiver module, radio telecommunication etc.

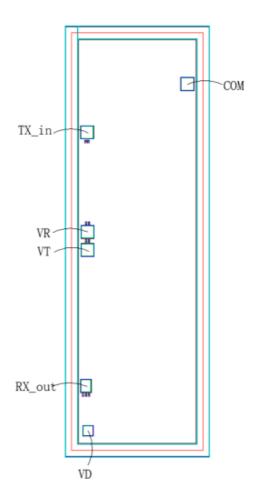
Description:

AMT1315 is a high performance transceiver multi-function chip, frequency range is $8-12\,\text{GHz}$, it integrates switch, clipper, LNA, gain is 24dB, noise figure is 2.7dB, transmitter channel RF switching insertion loss is 1.2dB, and transmitter output power at P-1 is 31dBm. It is designed by Gallium Arsenide (GaAs) process. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

Absolute Maximum Ratings (Ta = 25°C)


Symbol	Parameter	Value	Remark	
VD	Drain voltage	+7V		
Pin	Max. Input Signal Power	12dBm		
Tch	Operation Temperature	150°C		
Tm	Sintering Temperature	310°C	30s, N₂ protection	
Tstg	Storage Temperature	-65 ~ +150°C		

^[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)

Symbol	Parameter	Test Conditions	Value			Unit
			Min	Typical	Max	
G_R	Receiver gain		-	24	-	dB
NF	Receiver noise figure	VD = +5V	-	2.7	-	dB
$VSWR_{RX}$	Receiver input standing wave	F : 8 ~ 12GHz	-	1.8	-	-
$VSWR_{RX}$	Receiver output standing wave	VR = 0V	-	1.8	-	-
P _{R-1dB}	Receiver output power at P-1 point	VT = -5V	-	8	•	dBm
Ι	Receiver current		-	32	-	mA
IL	Transmitter insertion loss	VD = 0V	-	1.2	-	dB
$VSWR_{TX}$	Transmitter input standing wave	VG = -0.5V	ı	1.8	ı	1
$VSWR_{TX}$	Transmitter output standing wave	F:8~12GHz	ı	1.8	ı	1
P_{T-1dB}	Transmitter output power at P-1 point	VR = -5V, $VT = 0V$	-	31	-	dBm

Chip Dimensions (Unit: μ m)

Chip Layout Diagram

Usage Explanation

Operation State	Receive State	Transmit State
Voltage bias	VD = 5V, VR = 0V, VT = -5V	VD = 0V, VR = -5V, VT = 0V

Note, use either one of SW1 / SW2.

Please see appendix A for details.