AMT1218 28 – 40GHz Low Noise Amplifier Chip

Key Features:

Frequency range : 28 – 40GHz

• Typical gain: 28dB

• Input/output standing wave: 1.3/1.5

• Noise figure: 3dB

P-1:1dBm @ +5V/40mA

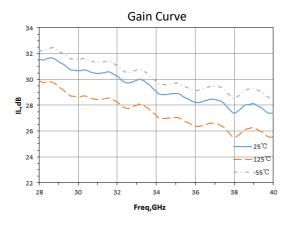
Chip dimensions: 2.7mm x 1.05mm x 0.1mm

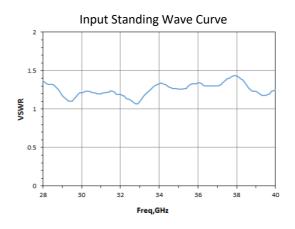
• Applications: wireless communication, transceiver module, radio telecommunication etc.

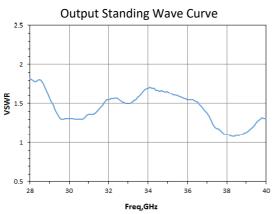
Description:

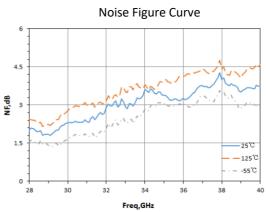
AMT1218 chip is a Gallium Arsenide (GaAs) high performance Low Noise Amplifier, it covers 28 – 40GHz frequency range. It uses +5V single voltage operation, noise figure is 3dB, and 28dB typical gain. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

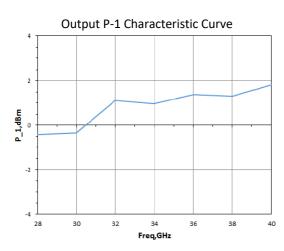
Absolute Maximum Ratings (Ta = 25°C)

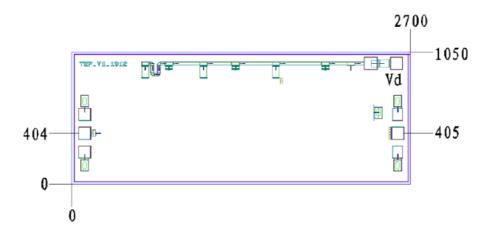

Symbol	Parameter	Value	Remark				
Vd	Drain Voltage	+7V					
Pin	Input Signal Power	17dBm					
Tch	Operating Temperature	150°C					
Tm	Sintering Temperature	310°C	30s, N₂ protection				
Tstg	Storage Temperature	-65 ~ +150°C					

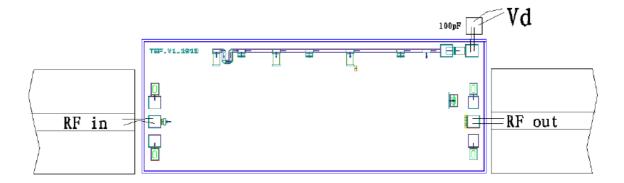

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Conditions	Value			Unit
			Min	Typical	Max	
G	Gain	-	26	28	-	dB
NF	Noise Figure		-	3	4.5	dB
Id	Static Current	Vd = +5V	-	40	-	mA
VSWR_in	Input Standing Wave	F : 28 ~ 40GHz	-	1.3	1.5	-
VSWR_out	Output Standing Wave		-	1.5	2	-
P-1	Output Power at 1dB point		-2	1	-	dBm


Typical Performance





Chip Dimensions (Unit: μ m)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 $\!\Omega$ system. no need to add DC blocking capacitor.	100*100μm²	RF-in O
RF_out	RF signal output port, connecting to external 50Ω system, no need to add DC blocking capacitor.	100*100μm²	- RF_out
Vd	Amplifier bias, need to connect external 100pF capacitor.	100*100μm²	¥ ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

Pleases see Appendix A for details.