
AMT2101 0.3 – 3GHz Power Amplifier Chip

Key Features and Applications

• Frequency: 0.3 – 3GHz

Typical small signal gain: 17dBTypical output power: 40dBm

• Typical power added efficiency: 45%

• Supply voltage: 28V, -2.4V

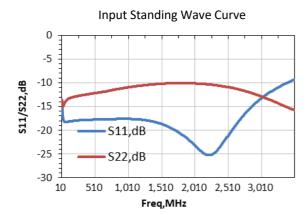
• Chip dimensions: 2.6mm x 1.3mm x 0.1mm

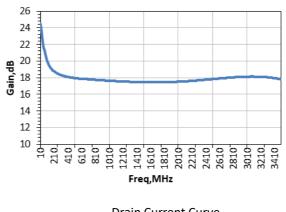
• Applications: wireless communication, transceiver module, radio telecommunication etc.

Description:

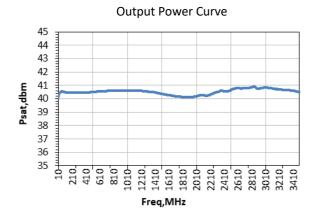
AMT2101 chip is a high performance high efficiency 0.3-3GHz power amplifier, it is designed based on Gallium Nitrate (GaN) HEMT process, with ground through metal via on the back technology. All chip products are 100% RF tested. AMT2101 is with dual voltage supply, drain voltage Vds = 28V, provides 40dBm output power in 0.3-3GHz frequency range.

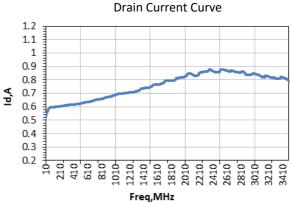
Absolute Maximum Ratings (Ta = 25°C)

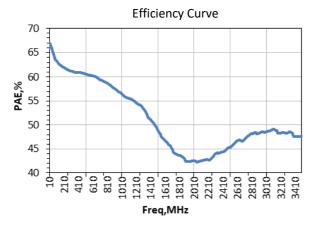

- 1000 1000 111 111 111 111 111 111 111							
Symbol	Parameter	Value	Remark				
Vd	Drain Voltage	35V					
Id	Drain Current	5A					
Vg	Gate Voltage	-1.5V					
lg	Gate Current	150mA					
Pd	DC Power Consumption	120W					
Pin	Input Signal Power	30dBm					
Tch	Operating Temperature	150°C					
Tm	Sintering Temperature	310°C	30s, N₂ protection				

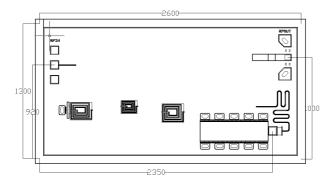

^[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

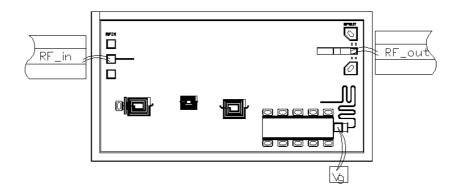
Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Condition	Value		Unit	
			Min	Typical	Max	
G	Small Signal Gain		-	17	-	dB
VSWRi	Input SW	Vd = 28V	-	1.3	1.5	dB
Pout	Saturated Output Power	Vg = -2.4V	-	40	-	dBm
PAE	Power Added Efficiency	F : 0.3~3GHz	-	45	-	%
Id	Operating Current	Duty Cycle : 10%	-	0.9	1	Α


Typical Performance




Gain Curve



Chip Dimension (Unit: μ m)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50Ω system. No DC blocking capacitor is needed, if external DC current is applied to this pad.	100*100μm²	RF-in
RF_out	RF signal output port, connecting to external 50Ω system, need to add DC blocking capacitor, external DC biasing network, provides drain current.	100*100μm²	ONE COLT & VAS
VG	Amplifier gate bias, need external 100pF, 1000pF capacitor.	100*100μm²	AR A

Please see Appendix A for details.