AMT1301 2.7 - 3GHz Multi-Function Chip

Key Features:

• Frequency range: 2.7 – 3GHz

• Receiver gain: 8dB

Transmitter small signal gain: 20dB

Receiver output P-1: 14dBm

Transmitter saturated output power: 24dBm

Receiver noise figure: 10dB

Phase shift bit : 6 bits
Phase shift step : 5.625°

Phase shift RMS: 3°, Phase shift additive attenuation ±0.8dB

Attenuation bit : 6 bitsAttenuation step : 0.5dB

Attenuation RMS: 0.5dB, Attenuation additive phase shift ±8°

Receiver Input/Output standing wave : 1.5
Transmitter Input/Output standing wave : 1.5

Operating voltage: +5V/+5V/-5V

• Static current: 100mA (transmitting) / 70mA (public) / 15mA (-5V)

• Control method : TTL parallel code control

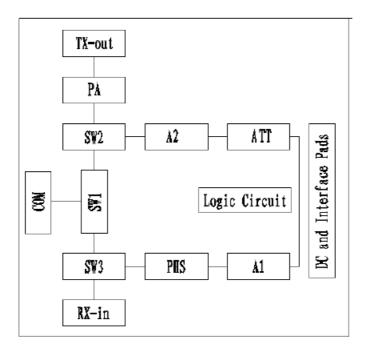
• Chip dimensions: 4.5mm x 3.5mm x 0.1mm

• Applications: wireless communication, transceiver module, radio telecommunication etc.

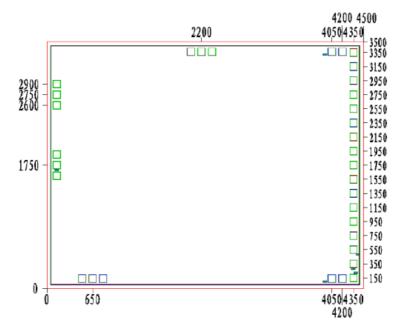
Description:

AMT1301 is a multi-function chip incorporating amplifier, switch, 6-digit attenuator, 6-digit phase shifter, control driver etc. functions (MMIC), it is designed by Gallium Arsenide (GaAs) pHEMT process. The chip operation voltage are +5V/+5V/-5V, control level is TTL, with parallel control for phase shift and attenuation. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

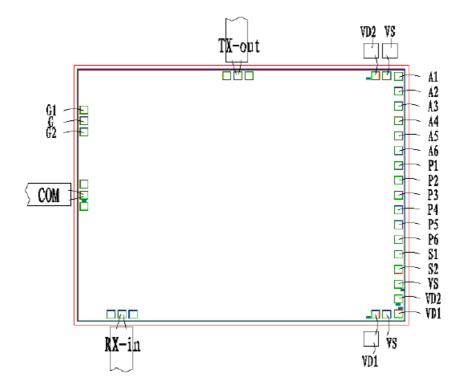
Absolute Maximum Ratings (Ta = 25°C)


Symbol	Parameter	Value	Remark	
P1~P6, A1~A6, S1, S2	Control voltage	+6V		
VD1, VD2	Operating voltage	+6V		
VS	Operating voltage	-6V		
Pin	Max. Input Signal Power	+20dBm		
Tch	Operating Temperature	150°C		
Tm	Sintering Temperature	310°C	30s, N₂ protection	
Tstg	Storage Temperature	-65 ~ +150°C		

^[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)

Symbol	Parameter	Value			Unit	Remark
		Min	Typical	Max		
F	Frequency		2.7 ~ 3		GHz	
Gain_R	Receiver gain	-	8	-	dB	About 1.5dB
						positive slope
P-1_R	Receiver output at P-1 point	-	14	-	dBm	
NF_R	Noise figure	-	10	-	dB	
Gain_T	Transmitter small signal gain	-	20	-	dB	
Psat_T	Transmitter saturated output power	-	24	-	dBm	
PS	Phase shift range	5.625 – 354.375 (6 digit phase °				
			shift)			
Δat	Phase shift additive amplitude varation	-0.8	-	+0.8	dB	
RMSp	Phase shift RMS	-	3	-	0	
ATT	Attenuation range	0.5 – 31.5 (6 digit attenuation) dB				
Δps	Attenuation additive phase shift varation	-8	-	+8	0	
RMS _A	Attenuation RMS	-	0.5	-	dB	
VSWR_R	Receiver Input/Output standing wave	-	1.5	-		
VSWR_T	Transmitter Input standing wave	-	1.5	-		
ld2	+5V (transmit) current	-	100	-	mA	
ld1	+5V (public) current	-	70	-	mA	
ls	-5V current	-	15	-	mA	


Internal Functional Diagram

Chip Dimensions (Unit : μm)

Chip Layout Diagram

Pad Definition

Name	Dimension	Description	
RX_in/TX_out	100μm x 100μm	Receiver input/Transmitter output	
COM	100μm x 100μm	Receiver output/Transmitter input	
VD1/VD2/VS	100μm x 100μm	Supply pad, +5V(public)/+5V(transmit)/=5V	
A1~A6, P1~P6	100μm x 100μm	TTL, attenuation phase shift control signal	
S1, S2	100μm x 100μm	TTL, switch control signal	
G1, G2	100μm x 100μm	1dB, 2dB gain adjustment	

Please see Appendix A for details.