AMT1201 1 – 20GHz Low Noise Amplifier Chip

Key Features :

- Frequency range : 1 20GHz
- Typical gain : 16dB
- Input standing wave : 1.2
- Output standing wave : 1.3
- Noise figure : 2.5dB
- P-1 : 14dBm @ +5V/64mA
- Chip dimensions : 3mm x 1.3mm x 0.1mm
- Applications : wireless communication, transceiver module, radio telecommunication etc.

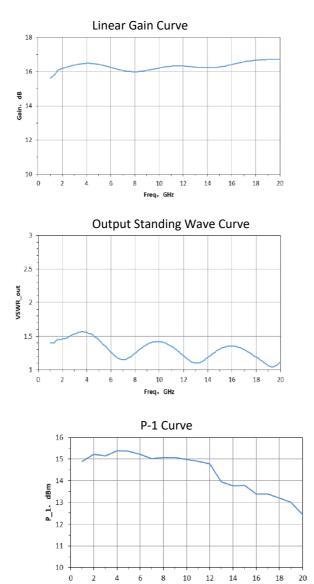
Description:

AMT1201 chip is a Gallium Arsenide (GaAs) high performance Low Noise Amplifier, it covers 1-20GHz frequency range. AMLA0013S uses +5V single voltage operation, typical Noise Figure is 2.5dB, and 16dB typical gain. This chip is designed with ground through metal vias on the back technology. All chip products are 100% RF tested.

Absolute Maximum Ratings (Ta = 25°C)

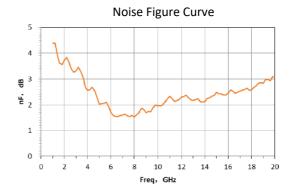
Symbol			Remark
Vd	Drain Voltage	7V	
Pin	Input Signal Power	17dBm	
Tch	Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N ₂ protection
Tstg	Storage Temperature	-65 ~ +150°C	

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

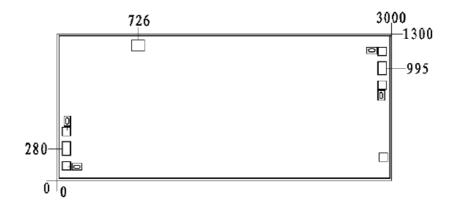

Electrical Characteristics (Ta = 25°C)

Symbol			Value		Unit	
			Min	Typical	Max	
G	Gain	Vd = +5V	-	16	-	dB
NF	Noise Figure		-	2.5	4.5	dB
Id	Drain Current		-	64	85	mA
VSWR_in	Input VSWR	F : 1 ~ 20GHz	-	1.2	1.5	
VSWR_out	Output VSWR		-	1.3	1.6	
P-1	Output compression at 1dB point		13	14	-	dBm

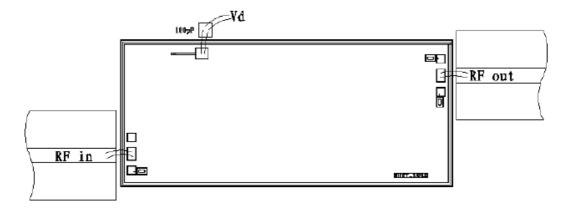
Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.


¹

Typical Performance


Freq, GHz

Input Standing Wave Curve 2.5 VSWR_in 1.5 Freq, GHz



Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Chip Dimensions (Unit : µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 Ω system. no need to add DC blocking capacitor.	100*100µm²	RF₋in ↔
RF_out	RF signal output port, connecting to external 50 Ω system, no need to add DC blocking capacitor.	100*100µm²	- - -○ RF_out
Vd	Amplifier bias, need to connect external 100pF capacitor.	100*100μm²	

Please see Appendix A for details.

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.