AMT1202 2 – 6GHz Low Noise Amplifier Chip

Key Features:

Frequency range: 2 – 6GHz

Typical gain: 28dB

Input standing wave : 1.6Output standing wave : 1.5

• Noise figure: 1dB

P-1: 12dBm @ +5V/29mA

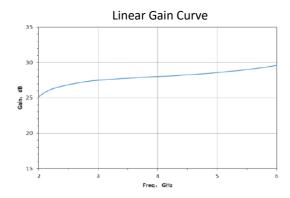
• Chip dimensions: 2.25mm x 1.3mm x 0.1mm

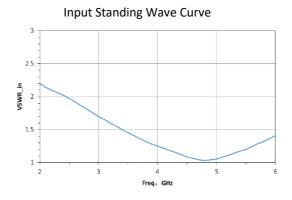
• Applications: wireless communication, transceiver module, radio telecommunication etc.

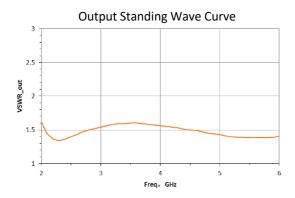
Description:

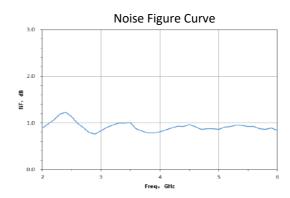
AMT1202 chip is a Gallium Arsenide (GaAs) high performance Low Noise Amplifier, it covers 2 - 6GHz frequency range. AMLA0014S uses +5V single voltage operation, noise figure is 1dB, and 28dB typical gain. This chip is designed with ground through metal vias on the back technology. All chip products are 100% RF tested.

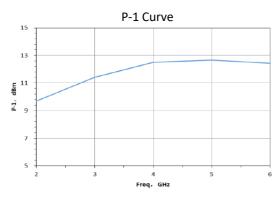
Absolute Maximum Ratings (Ta = 25°C)

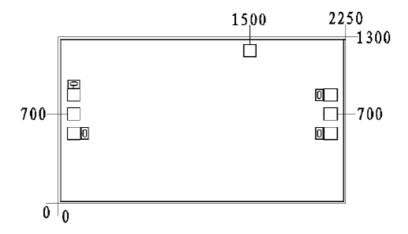

Symbol	Parameter	Value	Remark
Vd	Drain Voltage	7V	
Pin	Input Signal Power	17dBm	
Tch	Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N ₂ protection
Tstg	Storage Temperature	-65 ~ +150°C	

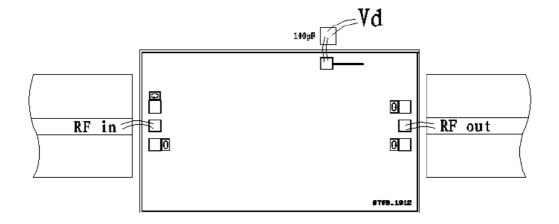

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Conditions	Value		Unit	
			Min	Typical	Max	
G	Gain		-	28	-	dB
NF	Noise Figure		-	1	1.4	dB
Id	Drain Current	Vd = +5v	-	29	35	mA
VSWR_in	Input VSWR	F : 2 ~ 6GHz	-	1.6	2.2	
VSWR_out	Output VSWR		-	1.5	1.65	
P-1	Output Compression at 1dB point		9.5	12	-	dBm


Typical Performance





Chip Dimensions (Unit: μ m)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 $\!\Omega$ system. no need to add DC blocking capacitor.	100*100μm²	RF_in O
RF_out	RF signal output port, connecting to external 50Ω system, no need to add DC blocking capacitor.	100*100μm²	RF_out
Vd	Amplifier bias, need to connect external 100pF capacitor.	100*100μm²	VD© II P

Please see Appendix A for details.