Key Features :

- Frequency : 63.87 MHz
- Input impedance : 0.5Ω

- Noise : 0.4 dB
- Gain : 28.5 dB
- $\mathrm{OIP}_{3}: 26 \mathrm{dBm}$
- Output VSMR : 1.2
- Magnet free
- 6 V single supply
- Applications : MRI, RF telemetry, medical.

Description :

GLA-01 is a Low Noise Amplifier (LNA) with low input impedance, it is designed to work with 50Ω source impedance of multi-channel coils. The front end amplifier exhibits superior performance on noise figure, at different source impedance variation caused by different coil loading or by non-ideal coil design. Also, with its wider noise contour map, the front end amplifier can increase its blocked impedance by using higher source impedance design, at the same time, keep its superior signal noise ratio.

Electrical Characteristics ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	Value			Unit
			Min	Typical	Max	
S_{21}	Gain	63.87 MHz	28.3	28.8	29.3	dB
$\Delta \mathrm{G}$	Gain Variation	$63.87 \mathrm{MHz} \pm 1 \mathrm{MHz}$	-	-	± 0.1	dB
RE[Zin]	Input Impedance	63.87 MHz	0.4	0.5	0.6	Ω
IM[Zin]		63.87 MHz	-2	0	2	Ω
SWR_{2}	Output VSMR	63.87 MHz	-	-	1.2	-
S_{12}	Reverse Isolation	63.87 MHz	95	100	-	dB
NF	Noise Figure	63.87 MHz	-	0.35	0.45	dB
$\mathrm{P}_{1 \mathrm{~dB}}$	Output Power at 1 dB Compression Point	63.87 MHz	9.5	10	-	dBm
OIP_{3}	3 dB Point Output	Each signal channel $\mathrm{P}_{\text {out }}=$ $0 \mathrm{dBm}, 1 \mathrm{MHz}$ isolation	22	26	-	dBm
$\mathrm{Idd}_{\text {d }}$	Consumption Current	$\mathrm{V}_{\text {dd }}=6 \mathrm{~V}$		18	20	mA
$\mathrm{V}_{\text {dd }}$	Supply Operating Voltage		5.9	6	30	V

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Unit	Value	Remark
Supply Voltage	V	+30 V	
Input Signal Power	dBm	15 dBm	
Operating Temperature	${ }^{\circ} \mathrm{C}$	$-55^{\sim}+125^{\circ} \mathrm{C}$	
Sintering Temperature	${ }^{\circ} \mathrm{C}$	$-40^{\sim}+150^{\circ} \mathrm{C}$	
Storage Temperature	${ }^{\circ} \mathrm{C}$	$-65{ }^{\sim}+150^{\circ} \mathrm{C}$	

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

[^0]
Typical Performance

S_{21} Curve

Noise Curve

IM[Zin] Curve

Phase Curve

S_{22} Curve

S_{12} Curve

OIP ${ }_{3}$ Curve

$P_{1 d \mathrm{~B}}$ Curve

Stability Curve

Chip Dimensions (Unit : $\mu \mathrm{m}$)

Chip Layout Diagram

Lead	1	2	3	4
Use	IN	NC $/ \mathrm{V}_{\mathrm{dd}}$	OUT/ V_{dd}	GND

[^0]: Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice
 Please refer to https://www.advancedmicrosystemstech.com for update information.

