AMT2102 2 – 6GHz Power Amplifier Chip

Key Features :

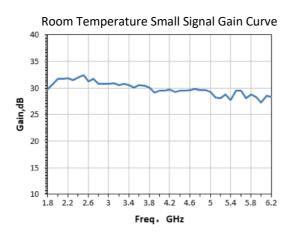
- Frequency : 2 6GHz
- Typical small signal gain : 29dB
- Typical output power : 45dBm
- Typical power added efficiency : 35%
- Supply voltage : 28V, -2V
- Chip dimensions : 4mm x 4.6mm x 0.1mm
- Applications : wireless communication, transceiver module, radio telecommunication etc.

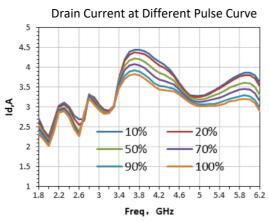
Description :

AMT2102 chip is a high performance high efficiency 2 – 6GHz power amplifier, it is designed based on Gallium Nitrate (GaN) HEMT process, with ground through metal via on the back technology. All chip products are 100% RF tested. AMT2102 is with dual voltage supply, drain voltage Vds = 28V, provides 45dBm output power in 2 – 6GHz frequency range.

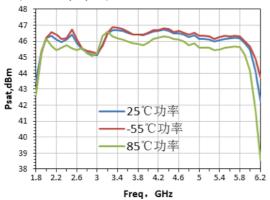
Symbol	Parameter	Value	Remark			
Vd	Drain Voltage	35V				
Id	Drain Current	5A				
Vg	Gate Voltage	-1.5V				
lg	Gate Current	150mA				
Pd	DC Power Consumption	120W				
Pin	Input Signal Power	30dBm				
Tch	Operating Temperature	150°C				
Tm	Sintering Temperature	310°C	30s, N ₂ protection			

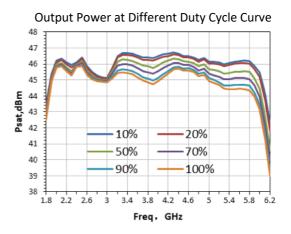
Absolute Maximum Ratings (Ta = 25°C)

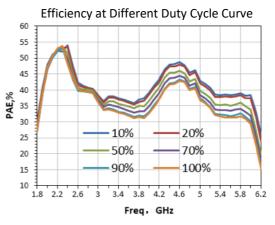

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage

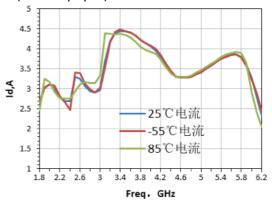

Electrical Characteristics (Ta = 25°C)

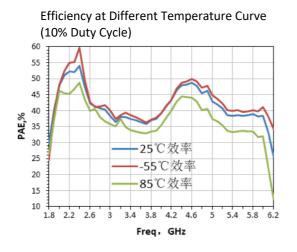
Symbol	Parameter	Test Condition	Value			Unit
			Min	Typical	Max	
G	Small Signal Gain	Vd = 28V	-	29	-	dB
VSWRi	Input SW		-	1.5	1.8	dB
Pout	Saturated Output Power		-	45	-	dBm
PAE	Power Added Efficiency	F : 2~6GHz	-	35	-	%
		Duty Cycle : 10%				
Id	Operating Current	, ,	-	3.5	-	A


Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

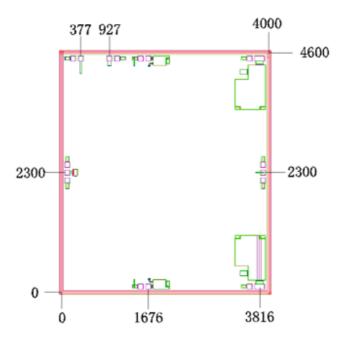

Typical Performance




Output Power at Different Temperature Curve (10% Duty Cycle)

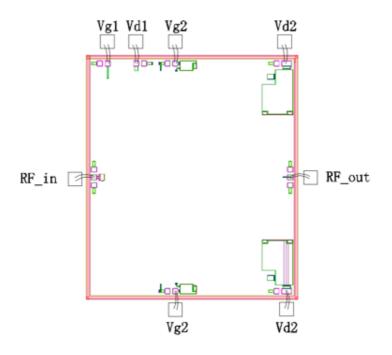


Drain Current at Different Temperature Curve (10% Duty Cycle)



2

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.



Chip Dimension (Unit : µm)

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	110*110µm²	RF₋in ↔
RF_out	RF signal output port, connecting to external 50 Ω system, no need to add DC blocking capacitor.	130*120μm²	
Vg1	Amplifier gate bias, need external 100pF, 1000pF capacitor.	150*150μm²	Vg «HH-LJ LJ
Vg2	Amplifier gate bias, need external 100pF, 1000pF capacitor.	150*100μm²	Vg «HHLJ LJ
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	130*150μm²	
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*120μm²	

Please see Appendix A for details.

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.