

Key Features :

- Frequency range : 8-12GHz
- Typical small signal gain : 23 dB
- Typical output power : 41dBm
- Typical power added efficiency (PAE) : 40\%
- Voltage bias : 8V, -0.75 V
- Chip dimensions : $3.6 \mathrm{~mm} \times 4.0 \mathrm{~mm} \times 0.1 \mathrm{~mm}$
- Applications : wireless communication, transceiver module, radio telecommunication etc.

Description :

AMT1110 chip is a Gallium Arsenide (GaAs) designed power amplifier chip, it uses dual voltage operation, with drain voltage Vds at 8.0 V , it offers 41 dBm power output in a frequency range of 8 12 GHz , power gain is 18.5 dB . This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

Absolute Maximum Ratings ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Remark
Vd	Drain Voltage	9 V	
Id	Drain Current	6 A	
Vg	Gate Voltage	-0.45 V	
Ig	Gate Current	100 mA	
Pd	Power Dissipation	45 W	
Pin	Input Signal Power	25 dBm	
Tch	Operating Temperature	$150^{\circ} \mathrm{C}$	
Tm	Sintering Temperature	$310^{\circ} \mathrm{C}$	$30 \mathrm{~s}, \mathrm{~N}_{2}$ protection
Tstg	Storage Temperature	$-65^{\sim}+150^{\circ} \mathrm{C}$	

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.
Electrical Characteristics $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test Condition	Value			Unit
			Min	Typical	Max	
G	Small Signal Gain	$\begin{gathered} \mathrm{Vd}=8.0 \mathrm{~V} \\ \mathrm{Vg}=-0.75 \mathrm{~V} \\ \mathrm{~F}: 8 \sim 12 \mathrm{GHz} \end{gathered}$	-	23	-	dB
Gp	Power Gain		-	18.5	-	dB
Pout	Saturated Power Output		-	41	-	dBm
PAE	Power Added Efficiency		-	40	-	\%
VSWR_in	Input Standing Wave		-	1.6	-	

Note, no CW operation.

[^0]
Typical Performance

Chip Dimensions (Unit : $\mu \mathrm{m}$)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	100*128 mm^{2}	RF_in
RF_out	RF signal output port, connecting to external 50Ω system, no need to add DC blocking capacitor.	$110 * 138 \mu \mathrm{~m}^{2}$	$\begin{aligned} & \text { H1FORF-out } \\ & = \end{aligned}$
Vg1	Amplifier gate bias, need external 100pF, 1000pF capacitor.	125*154 $\mu \mathrm{m}^{2}$	
Vg2	Amplifier gate bias, need external 100pF, 1000pF capacitor.	160*160 $\mu \mathrm{m}^{2}$	
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	$143 * 118 \mu \mathrm{~m}^{2}$	$\int_{ \pm}^{7}$
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	$128 * 143 \mu \mathrm{~m}^{2}$	$\int_{-1}^{\mathrm{Vd} 2}$
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	$200 * 160 \mu \mathrm{~m}^{2}$	$\underbrace{-1 H^{\prime \prime}}_{\equiv}$

Please see Appendix A for details.

[^1]
[^0]: Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice.
 Please refer to https://www.advancedmicrosystemstech.com for update information.

[^1]: Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice.
 Please refer to https://www.advancedmicrosystemstech.com for update information.

