AMT1110 8 – 12GHz Power Amplifier Chip

Key Features:

Frequency range: 8 – 12GHz
Typical small signal gain: 23dB
Typical output power: 41dBm

• Typical power added efficiency (PAE): 40%

• Voltage bias: 8V, -0.75V

• Chip dimensions: 3.6mm x 4.0mm x 0.1mm

• Applications: wireless communication, transceiver module, radio telecommunication etc.

Description:

AMT1110 chip is a Gallium Arsenide (GaAs) designed power amplifier chip, it uses dual voltage operation, with drain voltage Vds at 8.0V, it offers 41dBm power output in a frequency range of 8 – 12GHz, power gain is 18.5dB. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

Absolute Maximum Ratings (Ta = 25°C)

Symbol	Parameter	Value	Remark	
Vd	Drain Voltage	9V		
Id	Drain Current	6A		
Vg	Gate Voltage	-0.45V		
lg	Gate Current	100mA		
Pd	Power Dissipation	45W		
Pin	Input Signal Power	25dBm		
Tch	Operating Temperature	150°C		
Tm	Sintering Temperature	310°C	30s, N₂ protection	
Tstg	Storage Temperature	-65 ~ +150°C		

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

Electrical Characteristics (Ta = 25°C)

Symbol	Parameter	Test Condition	Value			Unit
			Min	Typical	Max	
G	Small Signal Gain		-	23	•	dB
Gp	Power Gain	Vd = 8.0V	-	18.5	=	dB
Pout	Saturated Power Output	Vg = -0.75V	-	41	-	dBm
PAE	Power Added Efficiency	F : 8 ~ 12GHz	-	40	-	%
VSWR_in	Input Standing Wave		-	1.6	-	

Note, no CW operation.

Typical Performance

Chip Dimensions (Unit: μ m)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	100*128μm²	RF-in
RF_out	RF signal output port, connecting to external 50 $\!\Omega$ system, no need to add DC blocking capacitor.	110*138μm²	RF_out
Vg1	Amplifier gate bias, need external 100pF, 1000pF capacitor.	125*154μm²	Vg1 o
Vg2	Amplifier gate bias, need external 100pF, 1000pF capacitor.	160*160μm²	Vg2
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	143*118μm²	Vd1
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	128*143μm ²	
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	200*160μm²	Vd3

Please see Appendix A for details.