AMT1114 14 – 18GHz Power Amplifier Chip

Key Features:

Frequency range: 14 – 18GHz
Typical small signal gain: 24.5dB
Typical output power: 37dBm

• Typical power added efficiency: 30%

• Voltage bias: +8V, -0.7V

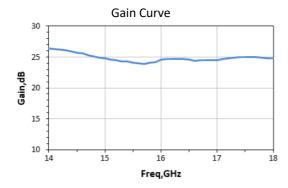
• Chip dimensions: 3.5mm x 2.4mm x 0.1mm

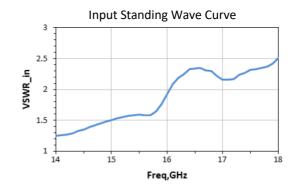
• Applications: wireless communication, transceiver module, radio telecommunication etc.

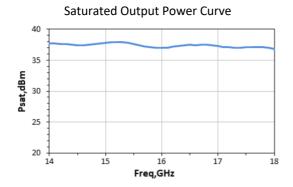
Description:

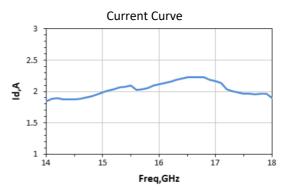
AMT1114 chip is a Gallium Arsenide (GaAs) designed power amplifier, covering 14 - 18GHz frequency range. It uses single voltage operation, with drain voltage Vds at 8.0V, it offers 37dBm output power. This chip is designed with ground through metal vias on the back technology. All chip products are 100% RF tested.

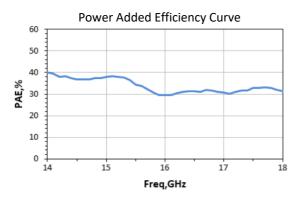
Absolute Maximum Ratings (Ta = 25°C)

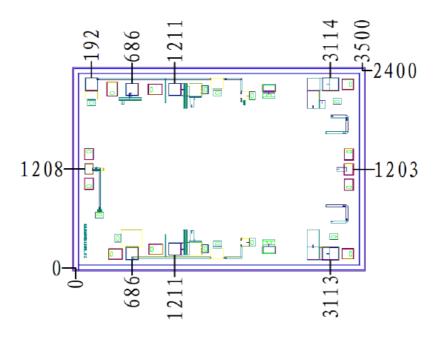

Symbol	Parameter	Value	Remark	
Vd	Drain Voltage	9V		
Id	Drain Current	6A		
Vg	Gate Voltage	-0.45V		
lg	Gate Current	100mA		
Pd	Power Dissipation	20W		
Pin	Input Signal Power	25dBm		
Tch	Operating Temperature	175°C		
Tm	Sintering Temperature	310°C	30s, N ₂ protection	
Tstg	Storage Temperature	-65 ~ +150°C		

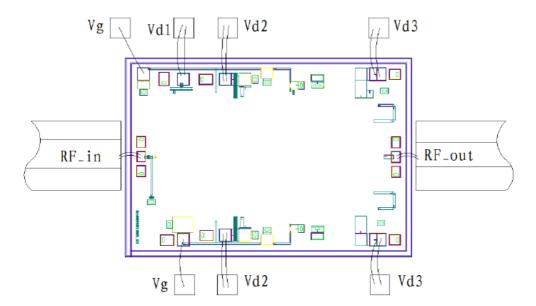

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Condition	Value			Unit
			Min	Typical	Max	
G	Small Signal Gain		24	24.5	-	dB
VSWR_in	Input SW	Vd = 8V	-	1.8	2.8	
Po(sat)	Saturated Output Power	Vg = -0.7V	36.5	37	-	dBm
PAE	Power Added Efficiency	F : 14 ~ 18GHz	-	30	-	%


Typical Performance





Chip Dimensions (Unit: µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	100*128μm²	RF-in
RF_out	RF signal output port, connecting to external 50Ω system, no need to add DC blocking capacitor.	110*138μm²	RF_out
Vg	Amplifier gate bias, need external 100pF, 1000pF capacitor.	150*150μm²	Vg o
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*150μm²	Vd1
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*150μm²	Vd2
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	200*153μm²	Vd3

Please see Appendix A for details.