AMT1328 33 - 37GHz Transceiver Integrated Multi-Function Chip

Key Features :

- Frequency : 33 37GHz
- Receiver gain : 25dB
- Transmitter gain : 28dB
- Receiver noise figure :3.8dB
- Receiver input/output standing wave : 1.5/1.5
- Transmitter input/output standing wave : 1.4/1.4
- Receiver output power at P-1 : 13dBm
- Transmitter output power at P-1 : 19dBm
- Transmitter saturated output power : 21.5dBm
- Receiver power dissipation : 5V/90mA
- Transmitter power dissipation : 5V/120mA
- Switch control method : 0/-5V
- Chip dimensions : 3.0mm x 2.5mm x 0.1mm
- Applications : wireless communication, transceiver module, radio telecommunication etc.

Description :

AMT1328 is a high performance transceiver multi-function chip, frequency range is 33 – 37GHz, it integrates switch and bi-directional power amplifier, receiver gain is 25dB, noise figure is 3.8dB, transmitter gain is 28dB, and transmitter saturated output power is 21.5dBm. It is designed by Gallium Arsenide (GaAs) process. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

Symbol	Parameter	Value	Remark			
Vd	Drain voltage	+7V				
Pin	Max. Input Signal Power	12dBm				
Tch	Operation Temperature	150°C				
Tm	Sintering Temperature	310°C	30s, N ₂ protection			
Tstg	Storage Temperature	-65 ~ +150°C				

Absolute Maximum Ratings (Ta = 25°C)

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Electrical Characteristics (Ta = 25°C)

Symbol	Parameter	Test Conditions		Value		Unit
			Min	Typical	Max	
G _R	Receiver gain	F : 6 ~ 18GHz	-	26	-	dB
NF	Receiver noise figure	PA_VD1 = 0V, PA_VD2 =	-	3.5	-	dB
VSWR _{RX}	Receiver input standing wave	0V, PA_VD3 = 0V,	-	1.4	-	-
VSWR _{RX}	Receiver output standing wave	PA_VD4 = 0V, PA_VG =	-	1.4	-	-
P _{R-1dB}	Receiver output power at P-1 point	0V, LNA_VD = +5V, SW1 = 0V, SW2 = -5V	-	2.5	-	dBm
GT	Transmitter power gain	F : 6 ~ 18GHz, PA_VD1 =	-	23	-	dB
VSWR _{TX}	Transmitter input standing wave	+5V, PA_VD2 = +5V,	-	1.8	-	-
VSWR _{TX}	Transmitter output standing wave	PA_VD3 = +5V, PA_VD4	-	2	-	-
P _{T-1dB}	Transmitter output power at P-1 point		-	22	-	dBm
Pout	Transmitter saturated output power	LNA_VD = 0V, SW1 = - 5V, SW2 = 0V	-	0.5	-	A

Typical Performance

35

Freq, GHz

37

36

2

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to https://www.advancedmicrosystemstech.com for update information.

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Chip Dimensions (Unit : µm)

4

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to https://www.advancedmicrosystemstech.com for update information.

Pad Definition				
Symbol	Symbol Function Description			
RF1	RF signal transmitter input/receiver output port, external connecting to 50 Ω system.	100µm * 100µm		
RR2	RF signal receiver input/transmitter output port, external connecting to 50 Ω system.	100µm * 100µm		
PA_VD1	Amplifier voltage bias at transmit state, refer to usage explanation for control logic	100µm * 100µm		
PA_VD2	Amplifier voltage bias at transmit state, refer to usage explanation for control logic	100µm * 100µm		
PA_VD3	Amplifier voltage bias at transmit state, refer to usage explanation for control logic	100µm * 100µm		
PA_VD4	Amplifier voltage bias at transmit state, refer to usage explanation for control logic	100µm * 100µm		
PA_VG	Amplifier voltage bias at transmit state, refer to usage explanation for control logic	100µm * 100µm		
LNA_VD	Amplifier voltage bias at receive state, refer to usage explanation for control logic	100µm * 100µm		
SW1	Supply control port, refer to usage explanation for control logic	100µm * 100µm		
SW2	Supply control port, refer to usage explanation for control logic	100µm * 100µm		

Usage Explanation

Operation State	Receive State (RF2-RF1)	Transmit State (RF1-RF2)
Voltage bias	PA_VD1 = 0V, PA_VD2 = 0V, PA_VD3 = 0V,	PA_VD1 = +5V, PA_VD2 = +5V, PA_VD3 = +5V
	PA_VD4 = 0V, PA_VG = 0V, LNA_VD = +5V,	PA_VD4 = +5V, PA_VG = -5V, LNA_VD = 0V,
	SW1 = 0V, SW2 = -5V	SW1 = -5V, SW2 = 0V

Note, use either one of SW1 / SW2.

Please see appendix A for details.

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.