AMT1328
33-37GHz Transceiver Integrated Multi-Function Chip

Key Features :

- Frequency : 33-37GHz
- Receiver gain : 25 dB
- Transmitter gain : 28dB
- Receiver noise figure : 3.8 dB
- Receiver input/output standing wave :1.5/1.5
- Transmitter input/output standing wave : 1.4/1.4
- Receiver output power at P-1:13dBm
- Transmitter output power at P-1:19dBm
- Transmitter saturated output power: 21.5 dBm
- Receiver power dissipation : $5 \mathrm{~V} / 90 \mathrm{~mA}$
- Transmitter power dissipation : 5V/120mA
- Switch control method: 0/-5V
- Chip dimensions : $3.0 \mathrm{~mm} \times 2.5 \mathrm{~mm} \times 0.1 \mathrm{~mm}$
- Applications : wireless communication, transceiver module, radio telecommunication etc.

Description :

AMT1328 is a high performance transceiver multi-function chip, frequency range is $33-37 \mathrm{GHz}$, it integrates switch and bi-directional power amplifier, receiver gain is 25 dB , noise figure is 3.8 dB , transmitter gain is 28 dB , and transmitter saturated output power is 21.5 dBm . It is designed by Gallium Arsenide (GaAs) process. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

Absolute Maximum Ratings ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Remark
Vd	Drain voltage	+7 V	
Pin	Max. Input Signal Power	12 dBm	
Tch	Operation Temperature	$150^{\circ} \mathrm{C}$	
Tm	Sintering Temperature	$310^{\circ} \mathrm{C}$	$30 \mathrm{~s}, \mathrm{~N}_{2}$ protection
Tstg	Storage Temperature	$-65^{\sim}+150^{\circ} \mathrm{C}$	

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

Electrical Characteristics $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test Conditions	Value			Unit
			Min	Typical	Max	
G_{R}	Receiver gain	$\begin{aligned} & \text { F: } 6 \sim 18 G H z \\ & \text { PA_VD1 }=0 \mathrm{~V}, \text { PA_VD2 }= \\ & \text { OV, PA_VD3 }=0 \mathrm{~V}, \\ & \text { PA_VD4 }=0 \mathrm{~V}, \mathrm{PA} \text {,VG = } \\ & \text { OV, LNA_VD }=+5 \mathrm{~V}, \mathrm{SW} 1 \\ & =0 \mathrm{~V}, \mathrm{SW} 2=-5 \mathrm{~V} \\ & \hline \end{aligned}$	-	26	-	dB
NF	Receiver noise figure		-	3.5	-	dB
VSWR ${ }_{\text {Rx }}$	Receiver input standing wave		-	1.4	-	-
VSWR ${ }_{\text {RX }}$	Receiver output standing wave		-	1.4	-	-
$\mathrm{P}_{\mathrm{R}-\mathrm{ddB}}$	Receiver output power at P-1 point		-	2.5	-	dBm
G_{T}	Transmitter power gain	$\begin{aligned} & \mathrm{F}: 6^{\sim} 18 \mathrm{GHz}, \mathrm{PA} \text { VD1 }= \\ & +5 \mathrm{~V}, \mathrm{PA} \text { VDD }=+5 \mathrm{~V}, \\ & \text { PA_VD3 }=+5 \mathrm{~V}, \text { PA_VD4 } \\ & =+5 \mathrm{~V}, \mathrm{PA} \text { _VG }=-5 \mathrm{~V}, \\ & \text { LNA_VD }=0 \mathrm{~V}, \text { SW1 }=- \\ & 5 \mathrm{~V}, \mathrm{SW} 2=0 \mathrm{~V} \end{aligned}$	-	23	-	dB
VSWR ${ }_{\text {TX }}$	Transmitter input standing wave		-	1.8	-	-
$\mathrm{VSWR}_{\text {TX }}$	Transmitter output standing wave		-	2	-	-
$\mathrm{P}_{\mathrm{T}-1 \mathrm{~dB}}$	Transmitter output power at P-1 point		-	22	-	dBm
Pout	Transmitter saturated output power		-	0.5	-	A

Typical Performance

[^0]

Chip Dimensions (Unit : $\mu \mathrm{m}$)

Chip Layout Diagram

Pad Definition

Symbol	Function Description	Dimensions
RF1	RF signal transmitter input/receiver output port, external connecting to 50Ω system.	$100 \mu \mathrm{~m} * 100 \mu \mathrm{~m}$
RR2	RF signal receiver input/transmitter output port, external connecting to 50Ω system.	$100 \mu \mathrm{~m} * 100 \mu \mathrm{~m}$
PA_VD1	Amplifier voltage bias at transmit state, refer to usage explanation for control logic	$100 \mu \mathrm{~m} * 100 \mu \mathrm{~m}$
PA_VD2	Amplifier voltage bias at transmit state, refer to usage explanation for control logic	$100 \mu \mathrm{~m} * 100 \mu \mathrm{~m}$
PA_VD3	Amplifier voltage bias at transmit state, refer to usage explanation for control logic	$100 \mu \mathrm{~m} * 100 \mu \mathrm{~m}$
PA_VD4	Amplifier voltage bias at transmit state, refer to usage explanation for control logic	$100 \mu \mathrm{~m} * 100 \mu \mathrm{~m}$
PA_VG	Amplifier voltage bias at transmit state, refer to usage explanation for control logic	$100 \mu \mathrm{~m} * 100 \mu \mathrm{~m}$
LNA_VD	Amplifier voltage bias at receive state, refer to usage explanation for control logic	$100 \mu \mathrm{~m} * 100 \mu \mathrm{~m}$
SW1	Supply control port, refer to usage explanation for control logic	$100 \mu \mathrm{~m} * 100 \mu \mathrm{~m}$
SW2	Supply control port, refer to usage explanation for control logic	$100 \mu \mathrm{~m} * 100 \mu \mathrm{~m}$

Usage Explanation

Operation State	Receive State (RF2-RF1)	Transmit State (RF1-RF2)
Voltage bias	PA_VD1 = 0V, PA_VD2 = 0V, PA_VD3 = 0V, PA_VD4 $=0 \mathrm{~V}, \mathrm{PA} _\mathrm{VG}=0 \mathrm{~V}, \mathrm{LNA}$ VD $=+5 \mathrm{~V}$, SW1 $=0 \mathrm{~V}, \mathrm{SW} 2=-5 \mathrm{~V}$	PA_VD1 $=+5 \mathrm{~V}, \mathrm{PA}$ VD2 $=+5 \mathrm{~V}, \mathrm{PA} _\mathrm{VD} 3=+5 \mathrm{~V}$ PA_VD4 $=+5 \mathrm{~V}, \mathrm{PA} _\mathrm{VG}=-5 \mathrm{~V}, \mathrm{LNA}$ VD $=0 \mathrm{~V}$, SW1 $=-5 \mathrm{~V}, \mathrm{SW} 2=0 \mathrm{~V}$

Note, use either one of SW1 / SW2.
Please see appendix A for details.

[^1]
[^0]: Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice.
 Please refer to https://www.advancedmicrosystemstech.com for update information.

[^1]: Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice
 Please refer to https://www.advancedmicrosystemstech.com for update information.

