
AMT1318

6 - 13GHz Transceiver Integrated Multi-Function Chip

Key Features:

Frequency range : 6 – 13GHzTransceiver gain : 9.5dB

Transceiver noise figure: 4.5dB

Transceiver output power at P-1: 12dBm
Transceiver input standing wave: 1.8
Transceiver output standing wave: 1.5

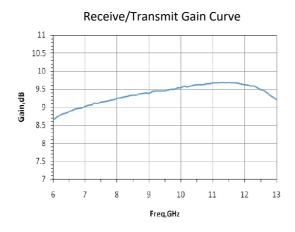
• Chip dimensions: 1.69mm x 1.17mm x 0.1mm

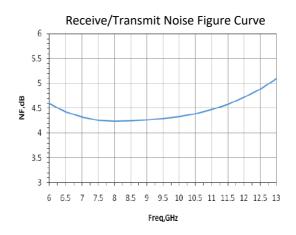
Applications: wireless communication, transceiver module, radio telecommunication etc.

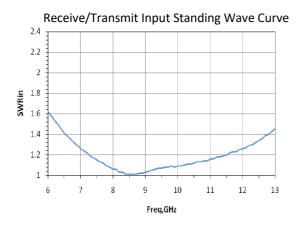
Description:

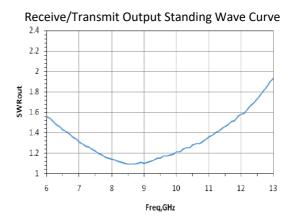
AMT1318 is a high performance transceiver by-directional power amplifier chip, receiver and transmitter have same circuit, frequency range is 6 – 13GHz, with transceiver gain at 9.5dB, transceiver noise figure is 4.5dB, and receive/transmit output power at P-1 is 12dBm. It is designed by Gallium Arsenide (GaAs) process. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

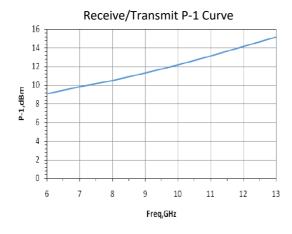
Absolute Maximum Ratings (Ta = 25°C)

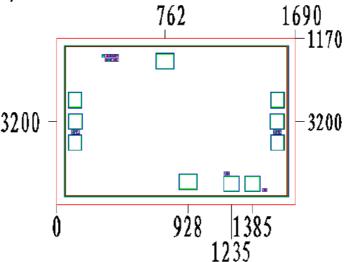

Symbol	Parameter	Value	Remark	
Vd1, Vd2	Supplier voltage	+7V		
VS	Control voltage	-6V		
Pin	Max. Input Signal Power	20dBm		
Tch	Operation Temperature	150°C		
Tm	Sintering Temperature	310°C	30s, N ₂ protection	
Tstg	Storage Temperature	-65 ~ +150°C		

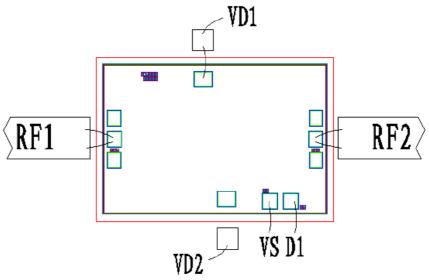

^[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.


Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test	Value		Unit	
		Conditions	Min	Typical	Max	
Gain	Receive/Transmit gain		ı	9.5	ı	dB
NF	Receive/Transmit noise figure		ı	4.5	ı	dB
VSWRin	Receive/Transmit input standing wave		ı	1.8	ı	ı
VSWRout	Receive/Transmit output standing wave	F:6-13GHz	ı	1.5	ı	ı
P _{-1dB}	Receive/Transmit output at P-1 point		ı	12	ı	dBm
1	Operation current		ı	20	ı	mA


Typical Performance





Chip Dimensions (Unit: μ m)

Chip Layout Diagram

Usage Description

State	Conditions		
RF1 Input, RF2 Output	VD1=5V, VD2=0V, VS=-5V, D1=H		
RF2 Input, RF1 Output	VD1=0V, VD2=5V, VS=-5V, D1=L		

Note, D1 uses TTL level control, for a 0/5V input signal, H represents 5V, L represents 0V.

Please see appendix A for details.