AMT2104 4 – 8GHz Power Amplifier Chip

Key Features :

- Frequency : 4 8GHz
- Typical small signal gain : 36dB
- Typical output power : 45dBm
- Typical power added efficiency : 42%
- Supply voltage : 28V, -1.8V
- Chip dimensions : 4.6mm x 3.0mm x 0.1mm
- Applications : wireless communication, transceiver module, radio telecommunication etc.

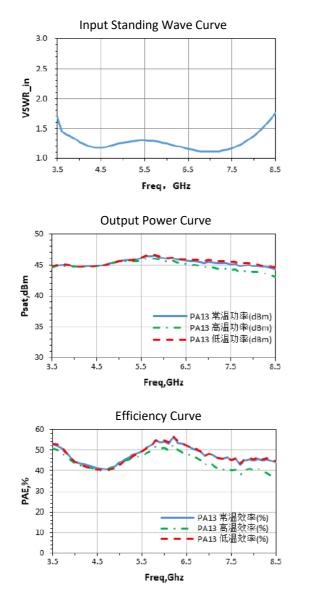
Description :

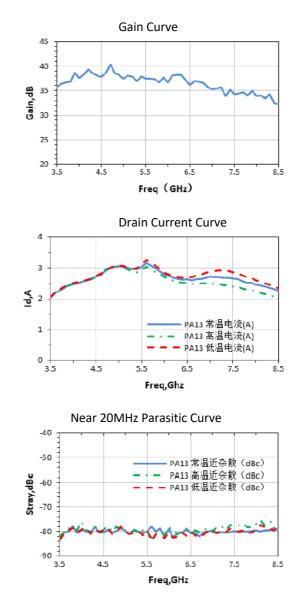
AMT2104 chip is a high performance high efficiency 4 – 8GHz power amplifier, it is designed based on Gallium Nitrate (GaN) HEMT process, with ground through metal via on the back technology. All chip products are 100% RF tested. AMT2104 is with dual voltage supply, drain voltage Vds = 28V, provides 45dBm output power in 4 – 8GHz frequency range.

Absolute Maximum Ratings (14 – 25 C)						
Symbol	Parameter	Value	Remark			
Vd	Drain Voltage	35V				
Id	Drain Current	5A				
Vg	Gate Voltage	-1.5V				
lg	Gate Current	150mA				
Pd	DC Power Consumption	120W				
Pin	Input Signal Power	30dBm				
Tch	Operating Temperature	150°C				
Tm	Sintering Temperature	310°C	30s, N ₂ protection			

Absolute Maximum Ratings (Ta = 25°C)

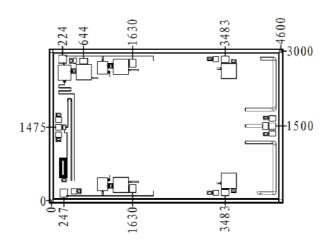
[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

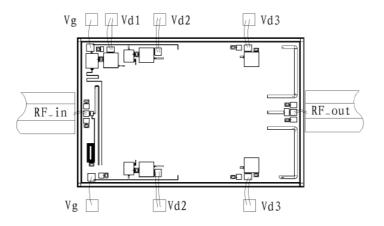

Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Condition	Value		Unit	
			Min	Typical	Max	
G	Small Signal Gain		-	36	-	dB
VSWRin	Input SW	Vd = 28V	-	1.3	1.8	dB
Pout	Saturated Output Power	Vg = -1.8V	-	45	-	dBm
PAE	Power Added Efficiency	F : 4~8GHz	-	42	-	%
Id	Operating Current	Duty Cycle : 10%	-	2.5	-	A

Note, under non-CW operation.

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.


Typical Performance



Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Chip Dimension (Unit : µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	110*110μm²	RF₋in ↔
RF_out	RF signal output port, connecting to external 50 Ω system, no need to add DC blocking capacitor.	130*120μm²	
Vg	Amplifier gate bias, need external 100pF, 1000pF capacitor.	150*150μm²	Vg ^{Wg} ^{Wg} ^L ^L ^L ^L
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*100μm²	
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	130*150μm²	

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Advanced	where systems reenhology		
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*120µm²	Q Vd3
			┙┥┝┉
			Ţ
Please	e see Appendix A for details.	•	