AMT1208 7 – 13GHz Low Noise Amplifier Chip

Key Features:

• Frequency range: 7 – 13GHz

• Typical gain: 21dB

Input/output standing wave: 1.3

• Noise figure: 1.1dB

• P-1:9dBm@+4V/40mA

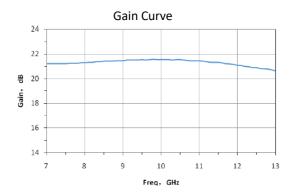
• Chip dimensions: 1.9mm x 1.05mm x 0.1mm

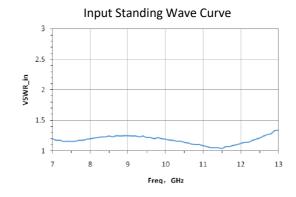
• Applications: wireless communication, transceiver module, radio telecommunication etc.

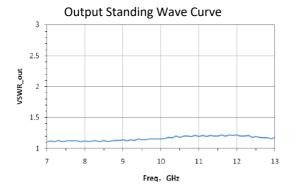
Description:

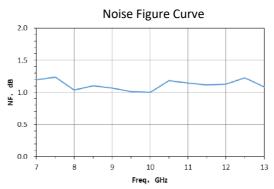
AMT1208 chip is a Gallium Arsenide (GaAs) high performance Low Noise Amplifier, it covers 7 – 13GHz frequency range. It uses +4V single voltage operation, Noise Figure is 1.3dB, and 21dB typical gain. This chip is designed with ground through metal vias on the back technology.

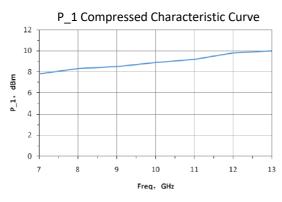
Absolute Maximum Ratings (Ta = 25°C)

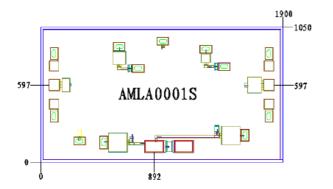

Symbol	Parameter	Value	Remark
Vd	Drain Voltage	7V	
Pin	Input Signal Power	17dBm	
Tch	Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N ₂ protection
Tstg	Storage Temperature	-65 ~ +150°C	

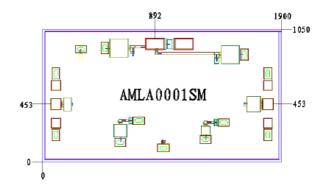

^[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

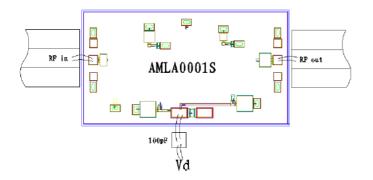

Electrical Characteristics (Ta = 25°C)

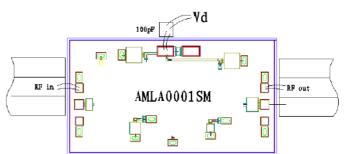

Symbol	Parameter	Test Conditions	Value		Unit	
			Min	Typical	Max	
G	Gain	Vd = +4V F : 7 ~ 13GHz	20.5	21	•	dB
NF	Noise Figure		-	1.1	1.2	dB
Id	Static Current		-	40	-	mA
VSWR_in	Input Standing Wave		-	1.3	-	-
VSWR_out	Output Standing Wave		-	1.3	-	-
P-1	Output Power at 1dB point		-	9	-	dBm


Typical Performance








Chip Dimensions (Unit: µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50Ω system. no need to add DC blocking capacitor.	100*100μm²	RF_in O
RF_out	RF signal output port, connecting to external 50Ω system, no need to add DC blocking capacitor.	100*100μm²	RF_out
Vd	Amplifier bias, need to connect external 100pF capacitor.	100*100μm²	ADO III

Please see Appendix A for details.