
AMT4101-01 Low Noise Transistor Device

Key Features :

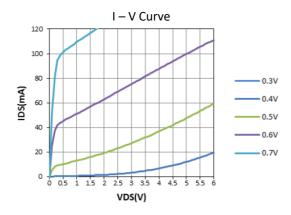
- Low noise figure : 0.5dB
- Gain G : 17dB@2GHz
- P_{1dB} : 19dBm
- High OIP3 : 33dBm
- High current I : 60mA
- Wideband
- Superior biasing and matching requirement
- Applications : GSM wireless communication, transceiver module, radio telecommunication etc.

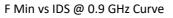
Description:

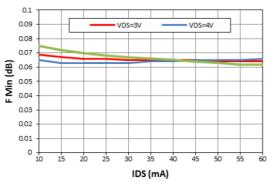
AMT4101-01 is a Gallium Arsenide (GaAs) pHEMT process designed super low noise amplifier, high IP3 transistor device. Incorporating the low noise figure and high IP3, at frequency below 4GHz, this can be an ideal amplifier for a harsh base station application.

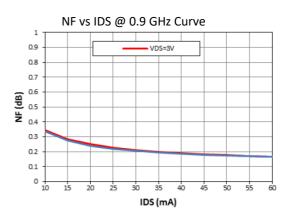
	utings (10 – 25 C)		
Parameter	Value	Unit	Remark
V _{DS}	11	V	
V _{GS}	-5 ~ 1	V	
V _{GD}	-5 ~ 1	V	
I _{DS}	720	mA	
I _{GS}	2	mA	
RF input power	17	dBm	
Operation Temperature	-55 ~ +125°C	°c	
Sintering Temperature	-40 ~ +150°C	°c	
Storage Temperature	-65 ~ +150°C	°C	

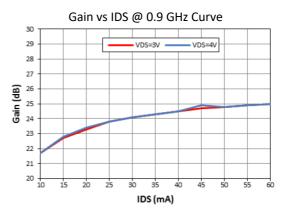
Absolute Maximum Ratings (Ta = 25°C)

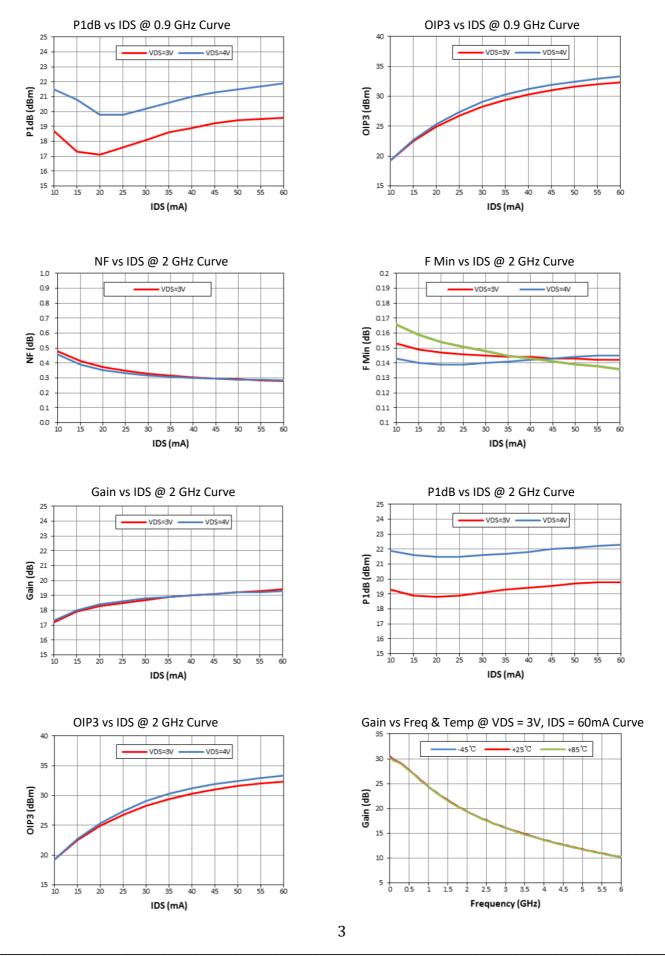

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

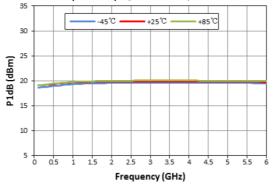

Electrical Characteristics (Ta = 25°C, frequency 0.01 – 6 GHz)

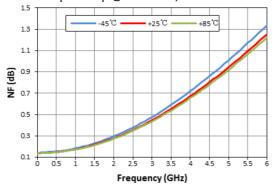

ol Parameter	Test Conditions	N	/alue		Unit
		Min	Typical	Max	
	Direct Current Chara	teristics			
Useable gate voltage	$V_{DS} = 3V, I_{DS} = 60mA$	0.5	0.55	0.6	V
Turn-on voltage	$V_{DS} = 3V, I_{DS} = 4mA$	0.42	0.44	0.46	V
Saturated drain current	$V_{DS} = 3V, V_{GS} = 0V$	-	2	4	μΑ
Transconductance	$\Delta V_{GS} = V_{GS1} - V_{GS2}$ $V_{GS1} = V_{GS} \text{ at } I_{DS} = 60 \text{mA}$	200	400	520	mS
	Useable gate voltage Turn-on voltage Saturated drain current	$\begin{tabular}{ c c c c } \hline \hline Direct Current Chara \\ \hline \hline Useable gate voltage & V_{DS} = 3V, I_{DS} = 60mA \\ \hline Turn-on voltage & V_{DS} = 3V, I_{DS} = 60mA \\ \hline Saturated drain current & V_{DS} = 3V, V_{GS} = 0V \\ \hline V_{DS} = 3V, G_M = \Delta I_{DS} / \Delta V_G \\ \hline Transconductance & \Delta V_{GS} = V_{GS1} - V_{GS2} \\ \hline V_{GS1} = V_{GS} \text{ at } I_{DS} = 60mA \\ \hline \hline \end{array}$	$\begin{tabular}{ c c c c } \hline \hline & $	$\begin{tabular}{ c c c c } \hline \hline Min & Typical \\ \hline \hline Direct Current Charateristics \\ \hline \hline Direct Current Charateristics \\ \hline \hline Useable gate voltage & $V_{DS} = 3V, I_{DS} = 60mA$ & 0.5 & 0.55 \\ \hline Turn-on voltage & $V_{DS} = 3V, I_{DS} = 4mA$ & 0.42 & 0.44 \\ \hline Saturated drain current & $V_{DS} = 3V, V_{GS} = 0V$ & $-$ & 2 \\ \hline V_{DS} = 3V, G_M = $\Delta I_{DS} / \Delta V_{GS}$ & $V_{DS} = 4mA$ & 0.42 & 0.44 \\ \hline Transconductance & $\Delta V_{GS} = V_{GS1} - V_{GS2}$ & 200 & 400 \\ \hline V_{GS1} = V_{GS} at I_{DS} = 60mA$ & 0.5 & 100	$\begin{tabular}{ c c c c } \hline Min & Typical & Max \\ \hline Direct Current Charateristics \\ \hline Useable gate voltage & V_{DS} = 3V, I_{DS} = 60mA & 0.5 & 0.55 & 0.6 \\ \hline Turn-on voltage & V_{DS} = 3V, I_{DS} = 4mA & 0.42 & 0.44 & 0.46 \\ \hline Saturated drain current & V_{DS} = 3V, V_{GS} = 0V & - & 2 & 4 \\ \hline V_{DS} = 3V, G_M = \Delta I_{DS} / \Delta V_{GS} & & & \\ \hline Transconductance & \Delta V_{GS} = V_{GS1} - V_{GS2} & 200 & 400 & 520 \\ \hline \end{tabular}$

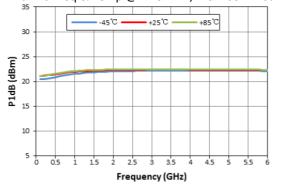

I _{GSS}	Gate leakage current	$V_{GD} = V_{GS} =$	-3V	-	-	100	Ļ				
RF Electrical Characteristics											
		$V_{DS} = 3V, I_{DS} = 60mA$	f = 0.9GHz	-	0.2	-					
			f = 2.0GHz	-	0.3	-					
NF	Noise figure		f = 3.9GHz	-	0.7	-	(
			f = 5.8GHz	-	1.2	-					
		$V_{DS} = 4V$, $I_{DS} = 60mA$	f = 2.0GHz	-	0.3	-					
		$V_{DS} = 3V, I_{DS} = 60mA$	f = 0.9GHz	-	25	-					
			f = 2.0GHz	-	19.4	-					
Gain	Gain		f = 3.9GHz	-	13.9	-	(
			f = 5.8GHz	-	10.5	-					
		$V_{DS} = 4V, I_{DS} = 60mA$	f = 2.0GHz	-	19.3	-					
		$V_{DS} = 3V, I_{DS} = 60mA$	f = 0.9GHz	-	32.3	-					
			f = 2.0GHz	-	34.6	-					
OIP3	Output third order		f = 3.9GHz	-	36.3	-	d				
	intercept point		f = 5.8GHz	-	36.9	-					
		$V_{DS} = 4V$, $I_{DS} = 60mA$	f = 2.0GHz	-	34.3	-					
		V _{DS} = 3V, I _{DS} = 60mA	f = 0.9GHz	-	19.2	-					
			f = 2.0GHz	-	19.9	-					
P1dB	Output 1dB compression		f = 3.9GHz	-	19.9	-	d				
	point		f = 5.8GHz	-	19.8	-					
		$V_{DS} = 4V, I_{DS} = 60mA$	f = 2.0GHz	_	22.3	-	1				

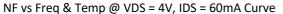

Typical Test Curve

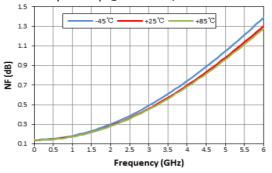


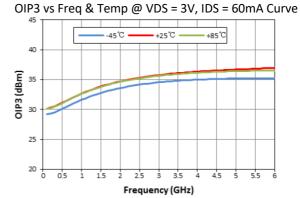



Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

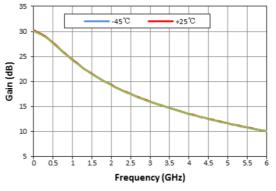

P1dB vs Freq & Temp @ VDS = 3V, IDS = 60mA Curve

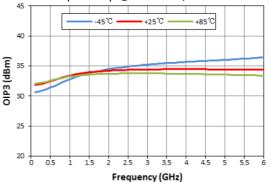


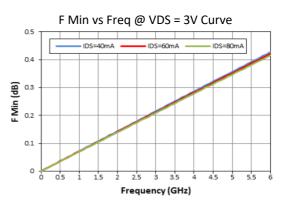

NF vs Freq & Temp @ VDS = 3V, IDS = 60mA Curve



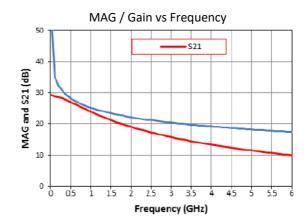
P1dB vs Freq & Temp @ VDS = 4V, IDS = 60mA Curve







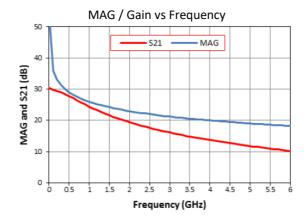
OIP3 vs Freq & Temp @ VDS = 4V, IDS = 60mA Curve



Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Typical S Parameter, V_{DS} = 3V, I_{DS} = 40mA

	S	11		S21		S	12	S	22	
Freq (GHz)	Mag.	Ang.	Mag.	Mag (dB)	Ang.	Mag.	Ang.	Mag.	Ang.	MSG (dB)
0.1	1	-16. 1	27.71	28.85	171.4	0.008	81.5	0.31	-24. 5	35. 2
0.5	0.97	-70. 6	22.49	27.04	142.5	0.034	53. 1	0.42	-91.5	28. 2
0.9	0.94	-103. 7	16. 79	24.5	125. 1	0. 046	36. 3	0.5	-121.5	25. 6
1.0	0.94	-109.4	15.65	23.89	122.1	0.048	33. 4	0.51	-126. 2	25. 2
1.5	0.92	-129.4	11.47	21.19	111.3	0. 052	23.4	0.54	-141.7	23.4
1.9	0.92	-139.1	9.36	19.42	105.9	0.054	-139.1	0.56	-148.8	22.4
2	0.92	-140.9	8. 94	19.03	104.8	0.054	17.5	0.56	-150. 1	22. 2
2.5	0. 92	-148.3	7. 28	17.25	100. 3	0.055	13. 7	0.57	-155.2	21.2
3.0	0. 91	-153. 3	6. 13	15.75	96.9	0.056	11	0.57	-158.6	20.4
4.0	0. 91	-159.7	4. 64	13.34	91.9	0.056	7.3	0.58	-162.6	19. 2
5.0	0. 91	-163.6	3. 73	11.43	88.1	0.057	4.9	0.58	-164.8	18. 2
6.0	0. 91	-166. 2	3. 11	9.86	85	0.056	3.1	0.59	-166. 1	17.4
7.0	0. 91	-168	2.67	8. 52	82. 2	0.056	1.7	0.59	-166.8	16.8
8.0	0. 91	-169.4	2. 33	7.35	79.6	0.056	0.5	0.59	-167.2	16. 2
9.0	0. 91	-170. 5	2.07	6. 31	77.2	0.056	-0.5	0.6	-167.4	15.7
10.0	0. 91	-171.3	1.86	5.38	74.9	0.055	-1.5	0.6	-167.5	15.3
11.0	0. 91	-172	1. 69	4. 53	72.7	0.055	-2.3	0. 61	-167.5	14.9
12.0	0.91	-172.6	1.54	3. 76	70.6	0.055	-3	0. 61	-167.4	14.5
13.0	0. 91	-173. 1	1. 42	3. 03	68.5	0.054	-3.7	0.62	-167.3	14. 2
14.0	0.92	-173.5	1. 31	2.36	66.5	0.054	-4. 3	0.62	-167.2	13.9
15.0	0. 92	-173.8	1. 22	1. 73	64.6	0. 053	-4. 9	0.63	-167.1	13.6
16.0	0.92	-174. 1	1.14	1.14	62.7	0.053	-5.4	0.63	-166.9	13.4
17.0	0. 92	-174. 4	1. 07	0. 58	60.8	0. 052	-5.9	0.64	-166.8	13.1
18.0	0.92	-174. 6	1.01	0. 05	58.9	0. 051	-6.3	0.64	-166.7	12.9


Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to <u>https://www.advancedmicrosystemstech.com</u> for update information.

Freq (GHz)	F Min (dB)	Г Opt (Magnitude)	Г Opt (Angle)	Rn/50
0.5	0. 036	0.809	24. 46	0. 038
0. 7	0. 05	0. 752	34. 1	0.038
0.9	0.065	0. 707	43. 535	0.038
1.0	0.072	0. 688	48. 15	0. 038
1.9	0. 136	0. 611	84. 36	0. 038
2.0	0. 144	0. 61	87.65	0. 038
2.4	0. 172	0. 614	99.37	0.038
3.0	0. 215	0. 632	113.05	0. 037
3.9	0. 279	0. 67	127. 27	0.037
5.0	0.357	0. 714	138. 45	0.037
5.8	0. 413	0. 741	144. 09	0.037
6. 0	0. 427	0. 747	145. 28	0. 037

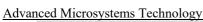
Typical Noise Parameter, V_{DS} = 3V, I_{DS} = 40mA

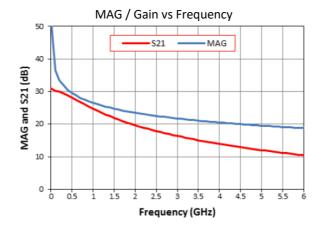
Typical S Parameter, V_{DS} = 3V, I_{DS} = 60mA

	S	11		S21		S	12	S	22	
Freq (GHz)	Mag.	Ang.	Mag.	Mag (dB)	Ang.	Mag.	Ang.	Mag.	Ang.	MSG (dB)
0. 1	1	-17.3	30. 73	29.75	170.8	0.008	80.9	0. 24	-32.8	36
0.5	0. 97	-74. 6	24. 36	27.73	140.6	0. 031	51.4	0. 42	-103.8	29
0.9	0. 95	-107.8	17.83	25. 02	123. 4	0. 041	34. 7	0. 51	-130.4	26. 4
1.0	0. 94	-113. 4	16. 57	24. 39	120. 4	0. 042	31.8	0. 53	-134. 5	26
1.5	0. 93	-132. 7	12.04	21.61	110. 1	0. 046	22.3	0. 57	-147.8	24. 2
1.9	0.93	-141.8	9.78	19.81	105	0.047	-141.8	0.58	-153. 8	23. 2
2	0. 93	-143. 6	9.34	19.4	103.9	0. 047	16.8	0. 58	-154. 9	23
2.5	0. 92	-150. 5	7.59	17.61	99.7	0. 048	13.3	0. 59	-159.3	22
3. 0	0. 92	-155. 2	6. 38	16. 1	96. 5	0. 048	10.8	0.6	-162. 2	21.2
4. 0	0. 92	-161.2	4.83	13.68	91.9	0.049	7.6	0.6	-165.6	20
5.0	0. 92	-164. 8	3.88	11.77	88.3	0. 049	5.5	0. 61	-167.5	19
6.0	0. 92	-167. 3	3. 23	10. 2	85.4	0. 049	4	0. 61	-168.6	18.2
7.0	0. 92	-169	2.77	8.86	82.8	0. 049	2.8	0. 61	-169. 2	17. 6
8.0	0. 92	-170. 3	2.42	7.69	80.4	0. 048	1.9	0. 62	-169.6	17
9.0	0. 92	-171.3	2. 15	6. 66	78.2	0. 048	1.1	0. 62	-169.8	16.5
10.0	0. 92	-172. 1	1.93	5.73	76. 1	0. 048	0.5	0. 62	-169.8	16. 1
11.0	0. 92	-172. 8	1.76	4. 89	74	0. 048	-0.1	0.63	-169.8	15.7
12.0	0. 92	-173. 3	1.61	4. 12	72	0.047	-0.6	0.63	-169.8	15.3
13.0	0. 92	-173.8	1.48	3.4	70. 1	0. 047	-1.1	0.63	-169.7	15
14. 0	0. 92	-174. 2	1.37	2.73	68.2	0. 047	-1.5	0.64	-169.6	14. 7
15.0	0. 92	-174. 5	1.28	2.11	66. 4	0. 046	-1.9	0.64	-169.5	14. 4
16.0	0. 92	-174. 8	1. 19	1.53	64. 6	0. 046	-2.2	0.65	-169.3	14. 2
17.0	0. 93	-175	1.12	0. 97	62.8	0. 045	-2.4	0. 65	-169. 2	13. 9
18.0	0. 93	-175. 3	1.05	0.45	61.1	0. 045	-2.7	0.66	-169. 1	13.7

Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to https://www.advancedmicrosystemstech.com for update information.

Freq (GHz)	F Min (dB)	Г Opt (Magnitude)	Г Opt (Angle)	Rn/50
0.5	0.036	0. 786	25. 21	0. 032
0.7	0.05	0. 723	35. 2	0.032
0.9	0. 064	0. 674	45.04	0.032
1.0	0. 071	0. 654	49.87	0.032
1.9	0. 134	0. 58	87. 61	0.032
2.0	0. 142	0. 58	90. 1	0.032
2.4	0. 17	0. 587	102. 91	0.032
3. 0	0. 212	0. 611	116. 569	0.032
3. 9	0. 275	0.654	130. 446	0.032
5.0	0.352	0. 702	141.16	0.032
5.8	0. 407	0. 731	146. 51	0.032
6. 0	0. 421	0. 737	147. 63	0.032

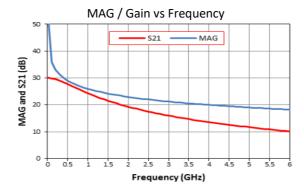

Typical Noise Parameter, V_{DS} = 3V, I_{DS} = 60mA


Typical S Parameter, V_{DS} = 3V, I_{DS} = 80mA

70.00.0										
	S	11		S21		S	12	S	22	
Freq (GHz)	Mag.	Ang.	Mag.	Mag (dB)	Ang.	Mag.	Ang.	Mag.	Ang.	MSG (dB)
0. 1	0.99	-17.9	32. 59	30. 26	170.5	0.007	80.6	0. 2	-39.7	36.5
0.5	0.97	-76. 5	25. 55	28. 15	139.8	0. 029	50.6	0. 42	-110. 2	29.5
0.9	0.95	-109.6	18. 54	25.36	122.6	0. 037	34	0. 52	-134. 7	27
1.0	0.94	-115.2	17. 21	24. 71	119.7	0. 039	31.2	0. 54	-138.4	26. 5
1.5	0.93	-134. 1	12. 45	21.9	109.6	0. 042	21.8	0.58	-150.6	24.7
1.9	0.93	-143	10. 1	20.09	104. 6	0. 043	-143	0.6	-156. 1	23.7
2	0.93	-144. 7	9.64	19. 68	103.6	0. 043	16. 6	0.6	-157. 2	23.5
2.5	0.93	-151.4	7.83	17. <mark>8</mark> 8	99. 5	0. 044	13. 2	0. 61	-161.2	22.5
3.0	0.93	-156	6. 58	16. 37	96. 4	0. 044	10.9	0. 61	-163.8	21.7
4. 0	0.93	-161.8	4. 98	13. 94	91.9	0. 044	7.9	0.62	-166. 9	20.5
5.0	0.93	-165.4	3. 99	12.03	88.5	0. 045	5.9	0.62	-168.7	19.5
6.0	0.93	-167.7	3. 33	10. 46	85.7	0. 044	4.6	0.63	-169.7	18.7
7.0	0.93	-169.4	2.86	9.12	83. 1	0. 044	3.6	0.63	-170. 3	18. 1
8.0	0.93	-170.7	2.5	7.96	80. 9	0. 044	2.8	0.63	-170. 7	17.5
9.0	0.93	-171.7	2. 22	6. 92	78. 7	0. 044	2.2	0.63	-170.8	17
10. 0	0. 93	-172.5	1.99	6	76. 7	0. 044	1.6	0.64	-170. 9	16. 6
11.0	0.93	-173. 1	1.81	5.16	74. 7	0.044	1.2	0.64	-170. 9	16. 2

8

Advan	iced Micros	<u>systems Te</u>	chnology								
	12.0	0.93	-173.6	1.66	4. 39	72.8	0. 043	0.8	0.64	-170.9	15.8
	13.0	0.93	-174. 1	1.53	3. 67	70.9	0. 043	0.5	0.65	-170.8	15.5
	14. 0	0.93	-174.5	1.41	3. 01	69.1	0. 043	0.2	0.65	-170. 7	15. 2
	15.0	0.93	-174.8	1.32	2. 39	67.4	0. 042	0	0.65	-170. 6	14. 9
	16. 0	0.93	-175. 1	1.23	1.81	65.6	0. 042	-0.2	0.66	-170.5	14. 7
	17.0	0.93	-175.3	1.16	1.26	63.9	0. 042	-0.4	0.66	-170. 4	14. 4
	18. 0	0.93	-175.6	1.09	0.74	62. 2	0. 041	-0.5	0.66	-170. 2	14. 2

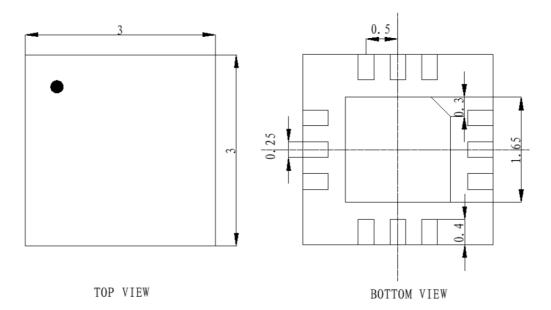


Typical Noise Parameter, V_{DS} = 3V, I_{DS} = 60mA

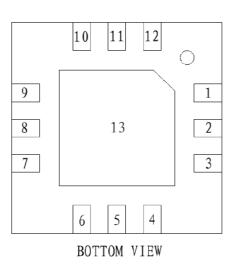
,	$\frac{1}{100} = 5^{\circ}, \frac{1}{100} =$			
Freq	FMin	Γ0pt	Γ0pt	Rn/50
(GHz)	(dB)	(Magnitude)	(Angle)	Kn/ 50
0. 5	0.035	0. 772	25. 47	0. 03
0. 7	0.049	0. 706	35. 63	0. 03
0. 9	0.063	0. 655	45.68	0.03
1.0	0.07	0. 634	50. 61	0. 03
1. 9	0.133	0. 561	89.24	0.03
2.0	0. 14	0. 561	92. 69	0.03
2. 4	0.168	0. 571	104. 74	0.03
3. 0	0.209	0. 598	118. 39	0.03
3. 9	0.272	0. 644	132. 1	0.03
5.0	0.347	0. 694	142. 57	0.029
5.8	0.402	0. 724	147. 77	0.029
6. 0	0. 416	0. 731	148.86	0.029

	S	11		S21		S	12	S	22	
Freq (GHz)	Mag.	Ang.	Mag.	Mag (dB)	Ang.	Mag.	Ang.	Mag.	Ang.	MSG (dB)
0. 1	1	-17.7	30. 93	29.81	170. 6	0.008	80.7	0.24	-32. 3	36
0.5	0.97	-75. 7	24. 34	27.73	140. 1	0. 031	50.8	0.42	-103. 7	29
0.9	0. 95	-108. 9	17. 71	24. 97	122. 8	0. 04	34. 1	0. 51	-130. 5	26. 4
1.0	0. 94	-114.5	16. 45	24. 32	119.9	0. 042	31.3	0.52	-134. 6	26
1.5	0. 93	-133. 5	11.92	21.52	109.6	0. 045	21.8	0.56	-147. 9	24. 2
1.9	0. 93	-142.5	9.67	19.71	104. 5	0. 047	-142.5	0.57	-153. 8	23. 2
2	0. 93	-144. 3	9.23	19.31	103. 5	0. 047	16.4	0. 58	-155	23
2.5	0. 93	-151	7.5	17.5	99.3	0. 047	12.9	0.58	-159. 3	22
3. 0	0. 92	-155. 7	6. 31	15.99	96. 2	0. 048	10.5	0. 59	-162. 1	21.2
4. 0	0. 92	-161.6	4. 77	13.57	91.5	0. 048	7.3	0.6	-165.4	20
5.0	0. 92	-165. 1	3.83	11.66	88	0. 048	5. 2	0.6	-167. 3	19
6. 0	0. 92	-167.5	3. 19	10.08	85	0. 048	3.7	0.6	-168. 3	18.2
7.0	0. 92	-169.2	2.74	8. 74	82.4	0. 048	2.6	0. 61	-168. 9	17.6
8.0	0. 92	-170.5	2.39	7.57	80	0. 048	1.6	0. 61	-169. 2	17
9.0	0. 92	-171.5	2.12	6. 54	77.7	0. 048	0.8	0. 61	-169.4	16.5
10.0	0. 92	-172. 3	1.91	5. 61	75.6	0. 047	0.1	0.62	-169.4	16. 1
11.0	0. 92	-172. 9	1.73	4. 76	73.5	0. 047	-0.5	0. 62	-169.4	15.7
12.0	0. 92	-173. 4	1.58	3.99	71.5	0. 047	-1	0.62	-169.3	15.3
13.0	0. 92	-173. 9	1.46	3. 27	69.5	0. 046	-1.5	0.63	-169. 2	15
14. 0	0. 93	-174. 3	1.35	2.6	67.6	0. 046	-1.9	0.63	-169	14. 7
15.0	0. 93	-174. 6	1.26	1.97	65.8	0. 046	-2.2	0.64	-168. 9	14. 4
16. 0	0. 93	-174. 9	1.17	1.39	63.9	0. 045	-2.5	0.64	-168.7	14. 1
17.0	0. 93	-175. 1	1.1	0.83	62. 2	0. 045	-2.8	0.65	-168.6	13. 9
18.0	0. 93	-175.4	1.04	0.3	60.4	0.044	-3. 1	0.65	-168.4	13.7

Typical S Parameter, V_{DS} = 4V, I_{DS} = 60mA



Advanced Microsystems Technology reserves the right to make change of data and information in the datasheet without prior notice. Please refer to https://www.advancedmicrosystemstech.com for update information.


Typical Noise Tara	$11etel, v_{DS} - 4v, I_{DS} - 4v$			
Freq (GHz)	F Min (dB)	Г Opt (Magnitude)	Г Opt (Angle)	Rn/50
0.5	0.037	0. 777	26. 03	0.032
0. 7	0.051	0. 713	36. 36	0.032
0.9	0.066	0. 663	46. 52	0.032
1.0	0.073	0. 644	51.49	0.032
1.9	0. 138	0. 575	90	0.032
2.0	0. 145	0. 575	93. 37	0.032
2. 4	0.174	0. 585	105.25	0.032
3. 0	0. 218	0. 612	118. 71	0.032
3.9	0. 283	0. 657	132.25	0.032
5.0	0.362	0. 706	142. 63	0.031
5.8	0. 419	0. 735	147. 79	0.031
6. 0	0. 433	0. 741	148.88	0.031

Typical Noise Parameter, V_{DS} = 4V, I_{DS} = 60mA

Dimensions (Unit : mm)

Lead Diagram

Lead	2	5	8	11	Other
Use	GATE	SOURCE	DRAIN	SOURCE	GND

12