AMT2106 7 – 13GHz Power Amplifier Chip

Key Features:

Frequency: 7 – 13GHz

Typical small signal gain: 31dBTypical output power: 44dBm

• Typical power added efficiency: 37%

• Supply voltage: 25V, -2V

• Chip dimensions: 4.6mm x 2.25mm x 0.1mm

Applications: wireless communication, transceiver module, radio telecommunication etc.

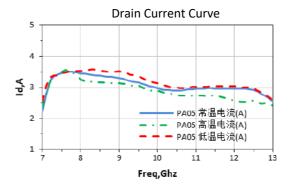
Description:

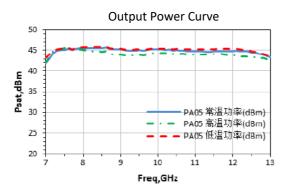
AMT2106 chip is a high performance high efficiency $7-13 \, \text{GHz}$ power amplifier, it is designed based on Gallium Nitrate (GaN) HEMT process, with ground through metal via on the back technology. All chip products are 100% RF tested. AMT2016 is with dual voltage supply, drain voltage Vds = 28V, provides 44dBm output power in $7-13 \, \text{GHz}$ frequency range.

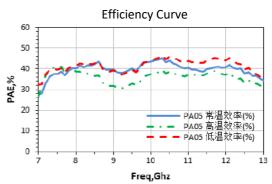
Absolute Maximum Ratings (Ta = 25°C)

Symbol	Parameter	Value	Remark
Vd	Drain Voltage	35V	
Id	Drain Current	4A	
Vg	Gate Voltage	-1.6V	
lg	Gate Current	150mA	
Pd	DC Power Consumption	100W	
Pin	Input Signal Power	30dBm	
Tch	Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N₂ protection

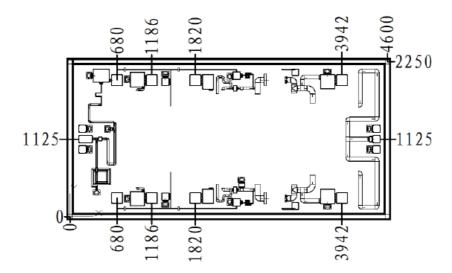

^[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

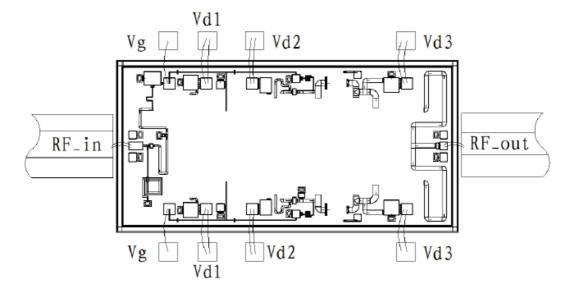

Electrical Characteristics (Ta = 25°C)


=								
Symbol	Parameter	Test Condition	Value			Unit		
			Min	Typical	Max			
Gain	Small Signal Gain		-	31	-	dB		
VSWRin	Input SW	Vd = 28V	-	1.8	2	dB		
Pout	Saturated Output Power	Vg = -2V	-	44	-	dBm		
PAE	Power Added Efficiency	F : 7~13GHz	-	37	-	%		
Id	Operating Current	Duty Cycle: 10%	-	3	3.5	Α		


Note, under non-CW operation.

Typical Performance





Chip Dimension (Unit: µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	187*100μm²	RF-in
RF_out	RF signal output port, connecting to external 50 $\!\Omega$ system, no need to add DC blocking capacitor.	100*100μm²	RF_out
Vg	Amplifier gate bias, need external 100pF, 1000pF capacitor.	150*150μm²	Vg O
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*150μm²	-√-Vd1 -√
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*150μm²	Vd2
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*150μm²	

Please see Appendix A for details.