AMT1217 28 – 40GHz Low Noise Amplifier Chip

Key Features:

• Frequency range: 28 – 40GHz

Typical gain: 22dB

• Input/output standing wave: 1.2

Noise figure : 2.2dB

• P-1: 3dBm @ +5V/30mA

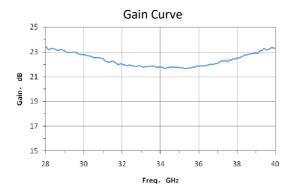
Chip dimensions: 2.25mm x 1.2mm x 0.1mm

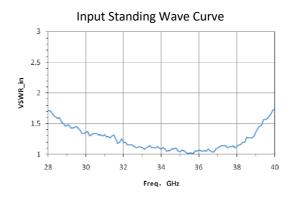
• Applications: wireless communication, transceiver module, radio telecommunication etc.

Description:

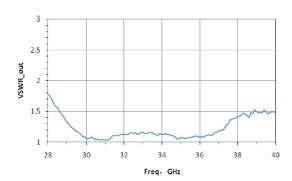
AMT1217 chip is a Gallium Arsenide (GaAs) high performance Low Noise Amplifier, it covers 28 – 40GHz frequency range. It uses +5V single voltage operation, noise figure is 2.2dB, and 22dB typical gain. This chip is designed with ground through metal vias on the back technology. All chip products p are 100% RF tested.

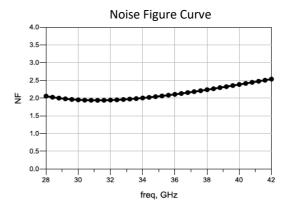
Absolute Maximum Ratings (Ta = 25°C)

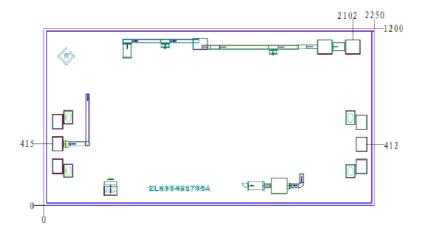

Symbol	Parameter	Value	Remark
Vd	Drain Voltage	+7V	
Pin	Input Signal Power	17dBm	
Tch	Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N ₂ protection
Tstg	Storage Temperature	-65 ~ +150°C	


[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

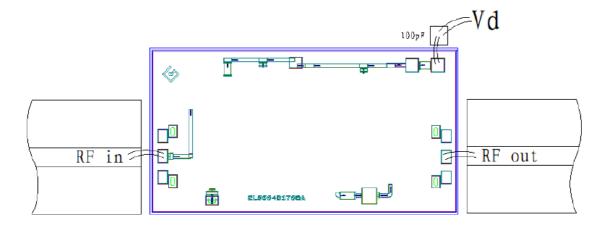
Electrical Characteristics (Ta = 25°C)


Symbol	Parameter	Test Conditions	Value		Unit	
			Min	Typical	Max	
G	Gain	Vd = +5V F : 28 ~ 40GHz	21.5	22	ı	dB
NF	Noise Figure		-	2.2	2.6	dB
Id	Static Current		-	30	•	mA
VSWR_in	Input Standing Wave		-	1.2	•	-
VSWR_out	Output Standing Wave		-	1.2	-	-
P-1	Output Power at 1dB point		-	3	-	dBm


Typical Performance



Output Standing Wave Curve



Chip Dimensions (Unit: μ m)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50Ω system. no need to add DC blocking capacitor.	100*100μm²	RF₋in ○
RF_out	RF signal output port, connecting to external 50Ω system, no need to add DC blocking capacitor.	100*100μm²	RF_out
Vd	Amplifier bias, need to connect external 100pF capacitor.	100*100μm²	AD 1

Please see Appendix A for details.