AMT2114 12 – 18GHz Power Amplifier Chip

Key Features:

• Frequency: 12 – 18GHz

Typical small signal gain : 29dBTypical output power : 45dBm

Typical power added efficiency: 30%

• Supply voltage: 28V, -2.4V

• Chip dimensions: 3.5mm x 3.4mm x 0.1mm

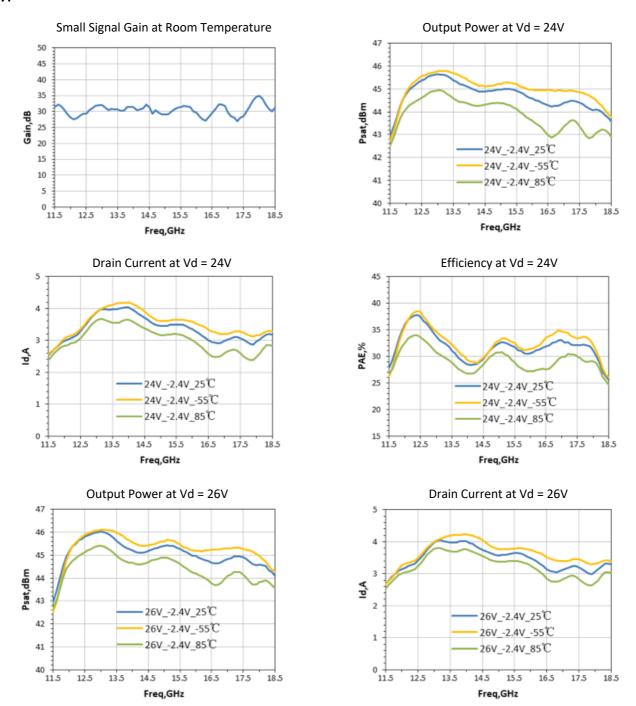
• Applications: wireless communication, transceiver module, radio telecommunication etc.

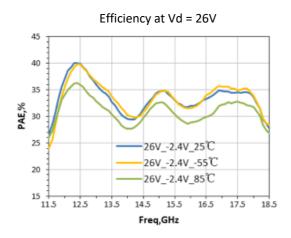
Description:

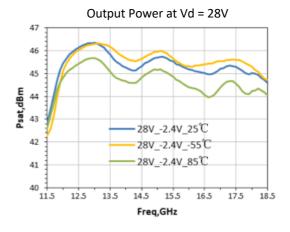
AMT2114 chip is a high performance high efficiency 12 – 18GHz power amplifier, it is designed based on Gallium Nitrate (GaN) HEMT process, with ground through metal via on the back technology. All chip products are 100% RF tested. AMPA0032S is with dual voltage supply, drain voltage Vds at 28V, it provides 45dBm output power in 12 – 18GHz frequency range.

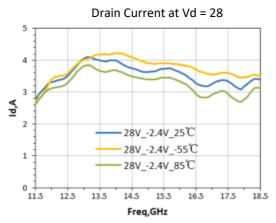
Absolute Maximum Ratings (Ta = 25°C)

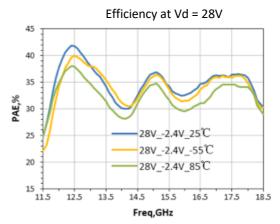
Symbol	Parameter	Value	Remark
Vd	Drain Voltage	35V	
Id	Drain Current	5A	
Vg	Gate Voltage	-1.5V	
lg	Gate Current	150mA	
Pd	DC Power Consumption	120W	
Pin	Input Signal Power	30dBm	
Tch	Operating Temperature	150°C	
Tm	Sintering Temperature	310°C	30s, N₂ protection

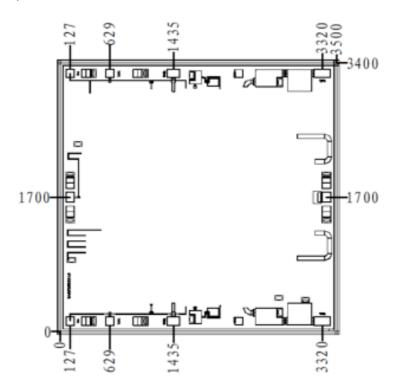

[1] Operation outside any of the Absolute Maximum Ratings may cause permanent device damage.

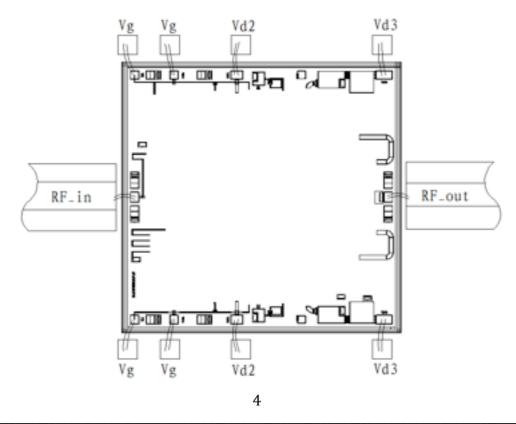

Electrical Characteristics (Ta = 25°C)


Electrical characteristics (14 25 c)								
Symbol	Parameter	Test Condition	Value		Unit			
			Min	Typical	Max			
Gain	Small Signal Gain		•	29	-	dB		
VSWRin	Input SW	Vd = 28V	•	1.5	1.8	dB		
Pout	Saturated Output Power	Vg = -2V	-	45	-	dBm		
PAE	Power Added Efficiency	F : 12~18GHz	•	30	-	%		
Id	Operating Current	Duty Cycle : 10%	-	3.5	-	Α		


Note, under non-CW operation.


Typical Performance





Chip Dimension (Unit: µm)

Chip Layout Diagram

Pad Definition

Symbol	Function	Dimension	Equivalent Circuit
RF_in	RF signal input port, connecting to external 50 Ω system. DC blocking capacitor is needed, if external DC current is applied to this pad.	100*120μm²	RF-in
RF_out	RF signal output port, connecting to external 50 $\!\Omega$ system, no need to add DC blocking capacitor.	100*120μm²	RF_out
Vg	Amplifier gate bias, need external 100pF, 1000pF capacitor.	100*100μm²	Vg ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Vd1	Amplifier drain bias, need external 100pF, 1000pF capacitor.	100*100μm²	Vd1 → H□
Vd2	Amplifier drain bias, need external 100pF, 1000pF capacitor.	150*100μm²	HH Vd2
Vd3	Amplifier drain bias, need external 100pF, 1000pF capacitor.	200*100μm²	Vd3

Refer to Appendix A for details.